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Abstract. Many physical phenomena may be modelled by first order hyperbolic
equations with degenerate dissipative or diffusive terms. This is the case for example
in gas dynamics, where the mass is conserved during the evolution, but the momentum
balance includes a diffusion (viscosity) or damping (relaxation) term, or, in numerical
simulations, of conservation laws by relaxation schemes.

Such so-called partially dissipative systems have been first pointed out by S.K. Go-
dunov in a short note in Russian in 1961. Much later, in 1984, S. Kawashima high-
lighted in his PhD thesis a simple criterion ensuring the existence of global strong
solutions in the vicinity of a linearly stable constant state. This criterion has been
revisited in a number of research works. In particular, K. Beauchard and E. Zuazua
proposed in 2010 an explicit method for constructing a Lyapunov functional allowing
to refine Kawashima’s results and to establish global existence results in some situa-
tions that were not covered before.

These notes originate essentially from the PhD thesis of T. Crin-Barat that was
initially motivated by an earlier observation of the author in a Chapter of the hand-
book coedited by Y. Giga and A. Novotný. Our main aim is to adapt the method
of Beauchard and Zuazua to a class of symmetrizable quasilinear hyperbolic systems
(containing the compressible Euler equations), in a critical regularity setting that
allows to keep track of the dependence with respect to e.g. the relaxation parameter.
Compared to Beauchard and Zuazua’s work, we exhibit a ‘damped mode’ that will
have a key role in the construction of global solutions with critical regularity, in the
proof of optimal time-decay estimates and, last but not least, in the study of the
strong relaxation limit. For simplicity, we here focus on a simple class of partially
dissipative systems, but the overall strategy is rather flexible, and adaptable to much
more involved situations.

Introduction

An important recent mathematical literature has been devoted to the study of first order
systems of conservation laws. These systems that come into play in the description of a
number phenomena in mechanics, physics or engineering typically read

(1) ∂tf
0(V ) +

d∑
k=1

∂xk(fk(V )) = 0

where the vector-fields fk, k = 0, · · · , d are defined on some open subset O of Rn, and
the unknown V depends on the time variable t ∈ R+ , [0,∞) and on the space variable
x ∈ Rd.

Under rather general conditions, for example whenever (1) is Friedrichs-symmetrizable, it
is well known that for any V̄ in O and initial data V0 : Rd → O such that V0 − V̄ belongs
to some Sobolev space Hs(Rd) with s > 1 + d/2, then (1) supplemented with initial
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data V0 admits a unique classical solution V on some time interval [−T, T ], satisfying
(V − V̄ ) ∈ Cb([−T, T ];Hs(Rd)) (the reader may find the detailed statement and the proof
in e.g. [4, Chap. 10]). At the same time, for most systems of the above type, smooth
solutions (even small ones) blow-up after finite time.

In many physical systems however, friction or diffusion phenomena (through e.g. thermal
conduction or viscosity) cannot be neglected. Typically, they act on some components of
the unknown, while other components remain unaffected. An informative example is gas
dynamics where the mass is conserved (as well as the entropy in the isentropic case). In
order to have an accurate description corresponding to these situations, it is thus suitable to
add in (1) zero (friction) or second (diffusion) order terms that act on a part of the unknown
but, possibly, not on all components. The resulting class of systems is named, depending
on the authors and on the context, hyperbolic-parabolic, partially diffusive or partially
dissipative. It has been extensively studied since the pioneering work by S. Kawashima
in his PhD thesis [24]. One of the main issues is to find as weak as possible conditions
ensuring the existence of global solutions close to constant states, to describe their long
time asymptotics and, where applicable, to study the convergence to some limit system.

Rather than writing out now the class of systems that enter in our study, let us give
a simple example from multi-dimensional gas dynamics. In he barotropic and isothermal
case, the governing equations then read:

(2)

{
∂t%+ divx (%v) = 0 in R+ × Rd,

∂t(%v) + divx (%v ⊗ v) +∇xP = A(%, v) in R+ × Rd.

Above, % = %(t, x) ∈ R+ stands for the density of the gas, and v = v(t, x) ∈ Rd, for the
velocity. The pressure P = P (%) is a given function of the density. A typical example
is the isentropic pressure law P (%) = a%γ with a > 0 and γ > 1. The first equation
corresponds to the mass conservation and the second one, to the momentum balance. We
assume that the fluid domain is the whole space which, somehow, means that boundary
effects are neglected. This is a fundamental assumption for our analysis, that strongly relies
on Fourier methods.

Regarding A, the usual assumptions are:

— either A is identically zero: then (2) is the barotropic compressible Euler equations
that is known to be Friedrichs-symmetrizable (again, refer e.g. to [4, Chap. 10])
and thus enters in the class considered in (1);

— or A(%, v) = f %v for some f > 0 (this is the so-called damped barotropic compressible
Euler equations, also named Euler equations with relaxation parameter ε if f = ε−1 );

— or A(%, v) = divx (µ(%)(∇xu+t∇xu)) +∇x(λ(%) divx u) for some smooth functions
λ and µ satisfying µ > 0 and λ+ 2µ > 0 (then, (2) is the barotropic compressible
Navier-Stokes equations).

It is by now well understood that in the first situation (neither viscosity nor damping),
smooth initial data generate a local-in-time solution that is likely to blow up after finite
time (see e.g. [1, 34]) whereas in the second and third situations, small and sufficiently
smooth perturbations of a constant density state

(3) (%̄, 0) with %̄ > 0 and P ′(%̄) > 0

produce global strong solutions that are defined for all positive times.
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The good diffusive properties of the barotropic compressible Navier-Stokes equations in
the whole space R3 (and, more generally, of the full non-isothermal polytropic system)
have been first observed by A. Matsumura and T. Nishida at the end of the 70ies. In
[28], they established the global existence of strong solutions for H3(R3) perturbations of
any constant state of type (3) (see [13] for a version of this result in the broader setting
of ‘critical Besov spaces’). An important achievement in the study of general first order
partially dissipative symmetric hyperbolic systems having both terms of order 0 and 2 has
been made by S. Kawashima in 1984, in his PhD thesis [24]. There, he exhibited a rather
simple sufficient condition that is nowadays called the (SK) (meaning Shizuta-Kawashima)
condition for global existence of strong solutions in the neighborhood of linearly stable
constant solutions. In the case where there is only a 0-order partially dissipative term,
Condition (SK) exactly says that for the linearized system, the intersection between the
kernel of the 0-order term and the set of all eigenvectors of the symmetric first order term
is reduced to {0}.

A bit later, S. Shizuta and S. Kawashima in [33] observed that Condition (SK) is equiv-
alent to the fact that, in the Fourier space, the real parts of all eigenvalues of the matrix of
the linearized system about the reference solution are strictly negative and also to the exis-
tence of a compensating function. That compensating function comes into play for working
out a functional that is equivalent to a Sobolev norm of high order and allows to recover the
optimal dissipative properties of the system. In the same paper, the authors pointed out
that, if in addition of being in a Sobolev space Hs(Rd) with large enough s, the discrep-
ancy of the initial data to the reference constant solution V̄ belongs to some Lebesgue space
Lp(Rd) with p ∈ [1, 2], then the global solution V converges to V̄ in L2(Rd) with the same

decay rate as for the heat equation, namely (1 + t)
− d

2
( 1
p
− 1

2
)
, when t goes to infinity. Since

then, more decay estimates have been proved under various assumptions in e.g. [5, 37, 40].

A number of more accurate results have been obtained since then for specific systems. For
instance, T. Sideris et al [35] considered the three-dimensional compressible Euler equations
with damping and Y. Zeng [43] studied a particular class of 4×4 nonlinear hyperbolic system
with relaxation. General partially (0-order) dissipative systems have been investigated by S.
Kawashima and W.-A. Yong in [25, 26] and by W.-A. Yong in [42], and adapted to second
order partially diffusive operators by V. Giovangigli et al in [18, 19]. Recent works on
general partially dissipative systems in the so-called critical functional framework (that will
be recalled later in this text) have been performed by J. Xu and S. Kawashima [38, 39, 40].

It has also been observed by several authors that Condition (SK) is not necessary for the
existence of global strong solutions. For instance, in [31], P. Qu and Y. Wang established a
global existence result in the case where exactly one eigenvector violates Condition (SK). In
this respect, one can also mention the paper by R. Bianchini and R. Natalini [6] that uses
nonresonant bilinear forms, and the recent work [8] dedicated to the mathematical study
of a model of mixture of compressible fluids.

The strength of Shizuta and Kawashima’s approach is that it does not require to com-
pute explicitly the Green function of the linearized system under consideration. Although
doing this calculation for the damped barotropic Euler equations presented above is not
an issue, computing the Green kernel associated to the corresponding linearized system in
the nonisothermal case is already more involved, and it soon becomes impossible for more
cumbersome systems (like e.g. systems related to the description of plasma or radiative
phenomena, see e.g [16]). As said before, having a ‘compensating function’ at hand allows
to construct an energy functional that encodes the dissipative properties of the system.
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In Shizuta and Kawashima’s work however, this functional is not so explicit, that makes
difficult, if not impossible, to track the dependency of the solution with respect to the
parameters of the system, when applicable. Another limitation is that it only provides
estimates on the whole solution, without supplying more accurate informations on the part
of the solution which is expected to experience a better dissipation.

In [3], K. Beauchard and E. Zuazua took advantage of techniques that originate from
Kalman control theory for linear ODEs so as to construct explicit Lyapunov functionals
for general partially dissipative systems of order 1. They also pointed out the connection
between Condition (SK) and the Kalman criterion for observability in the theory of linear
ODEs (this was also noticed by D. Serre in his unpublished lecture notes [32]). To some
extent, Beauchard and Zuazua’s approach may be interpreted in the broader framework of
hypo-ellipticity as presented by L. Hörmander in [22] or, much more recently, by C. Villani
in [36]. To keep these notes as elementary and short as possible, we refrain from looking
deeper into this direction, though.

Although it is not mentioned in the construction of a Lyapunov functional, Beauchard and
Zuazua’s approach provides for free compensating functions. Furthermore, the construction
is elementary (it suffices to compute at most n powers of matrices) and easily localizable in
the Fourier space. Hence, at the linear level, keeping track of the different behavior of the
low and of the high frequencies of the solution is obvious. Their method further allows to
handle some systems that do not satisfy Condition (SK) (but we shall not investigate this
interesting point is these notes).

The present lecture notes aim at familiarizing the reader with the Beauchard-Zuazua
approach and recent updates that originate from the thesis of T. Crin-Barat and were
published in [10, 11, 12]. As our aim is not to provide the reader with an exhaustive theory
of partially dissipative hyperbolic systems but rather to present a clear road map allowing
him to tackle efficiently the study of systems of this type, we shall focus on the following
‘academic’ class of partially dissipative hyperbolic systems:

(4) ∂tV +
d∑

k=1

Ak(V )∂kV = ε−1H(V ).

Above, the (smooth) functions Ak (k = 1, · · · , d) and H are defined on some open subset O
of Rn, and have range in the set of n×n real symmetric matrices, and in Rn, respectively.
The unknown V = V (t, x) depends on the time variable t ∈ R+ and on the space variable
x ∈ Rd (d ≥ 1). We fix a constant solution V̄ ∈ O of (4) (hence H(V̄ ) = 0). The system
is supplemented with initial data V0 ∈ O at time t = 0, that are sufficiently close to V̄ .
Finally, the relaxation parameter ε is a given positive parameter that, except in Section 4,
is taken equal to 1.

A basic example of a physical system in the above class is the compressible Euler equations
with isentropic pressure law P (%) = a%γ , if rewritten in terms of the (renormalized) sound
speed

c ,
(γA)

1
2

γ̃
(%)γ̃ with γ̃ ,

γ − 1

2
·

Indeed, the pair (c, v) then satisfies:

(5)

{
∂tc+ v · ∇c+ γ̃cdivv = 0 in R+ × Rd,

∂tv + v · ∇v + γ̃c∇c+ ε−1v = 0 in R+ × Rd.
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Under the so-called Condition (SK) (presented in the next section) that is satisfied in par-
ticular by (5), we shall prove the existence of global strong solutions with ‘critical regularity’
for (4) in the neighborhood of any constant solution V̄ (see Theorems 2.1 and 2.2). Then,
we shall obtain the strong convergence to V̄ in the long time asymptotics with explicit
decay rates (Theorem 3.1). In Section 4, we shall investigate the strong relaxation limit,
that is the convergence of the solutions of (4) to some limit system. Let us shortly explain
what we mean in the simple case of the compressible Euler equations. Making the following
‘diffusive’ rescaling:

(%, v)(t, x) = (%̃, εṽ)(εt, x),

we see that the pair (%̃, ṽ) satisfies:{
∂τ %̃+ div(%̃ṽ) = 0 in R+ × Rd,

ε2∂τ (%̃ṽ) + εdiv(%̃ṽ ⊗ ṽ) +∇(P (%̃)) + %̃ṽ = 0 in R+ × Rd.

Hence, formally, if %̃ and ṽ tend to some functions N and w, then the second equation
above yields

∇(P (N)) +Nw = 0

which, plugged in the mass conservation equation leads to the so-called porous media equa-
tion:

(6) ∂τN −∆(P (N)) = 0.

The rigorous justification of the convergence of the density to a solution of (6) has been
first carried out by S. Junca and M. Rascle [23] in the one-dimensional case where specific
techniques may be used. In the multi-dimensional case, the weak convergence and the
strong convergence on bounded subsets of Rd have been proved by J.-F. Coulombel and
C. Lin in [27], and by Z. Wang and J. Xu in [41]. Results in the same spirit for a class of
partially dissipative hyperbolic systems have been obtained by Y.-J. Peng and V. Wasiolek
in [30]. The approach that is proposed in the present lecture notes allows to get the strong
convergence in the whole space with explicit convergence rates for suitable norms when the
relaxation parameter tends to zero not only for the Euler equations, but also for a class of
partially hyperbolic systems (see Theorem 4.1).

It should be noted that, at the linear level, the method that has been originally proposed
by K. Beauchard and E. Zuazua in [3] works exactly the same for partial differential op-
erators of any order (and, more generally, for homogeneous Fourier multipliers) provided
one of them is skew-symmetric and the other one, nonnegative. We will enrich this method
by exhibiting a ‘damped mode’ for low frequencies, first introduced in [10] and [11] to the
best of our knowledge. This the key to an optimal treatment of the low frequencies of the
solution in a critical framework. With almost no additional effort, assuming a bit more
integrability on the initial data (expressed in terms of negative Besov spaces like in the
work [40] by J. Xu and S. Kawashima), and arguing essentially as in the paper by Y. Guo
and Y. Wang [21], we will derive optimal time decay estimates, pointing out better decay
for the high frequencies of the solution and for the damped mode. It turns out that adopt-
ing a critical approach with different levels of regularity for low and high frequencies also
allows to keep track of the relaxation parameter ε just by suitable space/time rescaling.
This substantially simplifies the study of the strong relaxation limit. Here again, having a
damped mode at hand plays an essential role.
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Except for our linear analysis, we here concentrate on first order hyperbolic symmetric
systems with a partial dissipation term of order 0. The class that is considered contains
the isentropic Euler equations with relaxation. We expect the whole strategy modified
accordingly to be adaptable to hyperbolic-parabolic systems, to operators of any order and
to more complex situations where the partially dissipative terms have mixed orders (see
recent examples in [16] and [8]). It would also be of interest to study to what extent it may
be adapted to situations where pseudo-differential operators depending on the space variable
come into play. Since we used mostly Fourier analysis in our investigations, most of our
results can be adapted to periodic boundary conditions in one or several directions, leading
to the same statements in the first three sections (the strong relaxation limit studied in
Section 4 may be different since the rescaling we used there changes the size of the periodic
box). Handling ‘physical’ boundaries requires completely different tools, and we have no
opinion on whether similar results are true or not.

The rest of these notes unfolds as follows. In the next section, we present Beauchard
and Zuazua’s approach for linear partially dissipative hyperbolic systems with operators
of any orders. This enables us to deduce quite easily global-in-time a priori estimates in
‘hybrid’ Besov spaces with different regularity exponents for low and high frequencies. We
also exhibit a damped mode, the low frequencies of which satisfy better decay estimates
and point out that, under additional structure conditions on the system, it is possible to
use without much effort an Lp functional framework for the low frequencies. The following
sections focus on the nonlinear system (4). In Section 2, we prove global-in-time results
while time decay estimates are established in Section 3. In Section 4, we prove strong
convergence results when the relaxation parameter ε tends to 0 for partially dissipative
systems having the same structure as the isentropic compressible Euler equations with
damping. A few technical results are recalled or proved in Appendix.

Acknowledgements. The author is indebted to the anonymous referees for their relevant
remarks and suggestions that contributed to improve substantially the organization of these
notes. The author has been partially supported by the ANR project INFAMIE (ANR-15-
CE40-0011).

1. The linear analysis

To better understand the difference between the three model situations corresponding to
System (2), having first a look at the linearized equations about (%̄, 0) is very informative.
After suitable renormalization, the system to be considered reads:

(7)

{
∂ta+ divu = 0 in R+ × Rd,

∂tu+∇a+ κ(−∆)
β
2 u = 0 in R+ × Rd.

The above cases correspond to (κ, β) = (0, 0), (κ, β) = (f, 0) with f > 0 or (κ, β) = (µ(%̄), 2)
(in the special situation λ(%̄) + µ(%̄) = 0 the general case being similar), respectively.

If κ = 0 then System (7) is purely first order hyperbolic and no diffusion or dissipative
phenomenon is expected whatsoever since all Sobolev norms are constant in time. In the
multi-dimensional case, dispersive phenomena of wave equation type do exist, but they
concern only the density and the potential part of the velocity (they will not be discussed
here).

Let us focus on the case κ > 0 and β 6= 1 (not necessarily equal to 0 or 2). After suitable
rescaling, one can then suppose that κ = 1. In the Fourier variable ξ corresponding to the
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physical variable x , the above system (7) rewrites

(8)
d

dt

(
â
û

)
+

(
0 iξ
itξ |ξ|β

)(
â
û

)
=

(
0
0

)
, ξ ∈ Rd.

In order to have some insight on the long-time behavior of the solution (a, u), let us look at
the eigenvalues of the (d+1)×(d+1) matrix of System (8). The eigenvalue |ξ|β appears with
multiplicity d− 1 (this corresponds to the ‘incompressible’ part of the velocity field). The
remaining two eigenvalues λ±(ξ) capture the coupling between a and the ‘compressible’
part of u, and may be computed by considering the following 2×2 reduced system satisfied
by a and υ , (−∆)−1/2divv, namely, if κ = 1,{

∂ta+ (−∆)1/2υ = 0 in R+ × Rd,

∂tυ − (−∆)1/2a+ (−∆)
β
2 υ = 0 in R+ × Rd.

The corresponding matrix in the Fourier space reads

(
0 |ξ|
−|ξ| |ξ|β

)
·

Two different situations occur depending on whether β is smaller or greater than 1:

• The ‘dissipative’ situation β < 1:

λ±(ξ) = |ξ|β
2

(
1±

√
1− 4|ξ|2(1−β)

)
if |ξ|1−β < 1/2,

λ±(ξ) = |ξ|β
2

(
1± i

√
4|ξ|2(1−β) − 1

)
if |ξ|1−β > 1/2.

Observe that for ξ → 0, we have λ+(ξ) ∼ |ξ|β (parabolic behavior similar to that

of (−∆)β/2 ) while λ−(ξ) ∼ |ξ|2−β (parabolic behavior of type (−∆)1−β/2 ).
• The ‘diffusive’ situation β > 1:

λ±(ξ) = |ξ|β
2

(
1± i

√
4|ξ|2(1−β) − 1

)
if |ξ|β−1 < 1/2,

λ±(ξ) = |ξ|β
2

(
1±

√
1− 4|ξ|2(1−β)

)
if |ξ|β−1 > 1/2.

For ξ → ∞, we have λ+(ξ) ∼ |ξ|β (parabolic behavior like for (−∆)β/2 ) while

λ−(ξ) ∼ |ξ|2−β (parabolic behavior similar to that of (−∆)1−β/2 ).

At the linear level, the damped Euler equations and the compressible Navier-Stokes
equations correspond to the dissipative and diffusive situations, respectively. We observe
that, in the two cases, the whole solution decays to 0 with a decay rate that depends on
|ξ| although there is no damping term in the linearized mass equation. Note however that,
depending on whether β < 1 or β > 1, the behavior of the low and high frequencies of the
solution is exchanged.

Let us revert to our model system (4) with ε = 1 for simplicity, namely

(9) ∂tV +

d∑
k=1

Ak(V )∂kV = H(V ).

Let us fix a constant solution V̄ of (9) (that is, V̄ ∈ O satisfies H(V̄ ) = 0) and make the
following structure assumptions on the system:

(H1) For all V ∈ O, the matrices Ak(V ) are real symmetric;

(H2) The spectrum of DH(V̄ ) is included in the set {z ∈ C : Re z ≤ 0}.
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In the case H ≡ 0 (no dissipation at all) smooth solutions, even small ones, may blow
up after finite time. At the exact opposite, if the spectrum of DH(V̄ ) is included in the
set {z ∈ C : Re z < 0} then it is not difficult to show that small perturbations of V̄ in the
Sobolev space Hs with s > 1+d/2 generate global strong solutions that tend exponentially
fast to V̄ when time goes to infinity. We here address the intermediate situation where
some eigenvalues of DH(V̄ ) vanish. For expository purpose, we assume that H is linear
and has the block structure:

(10) H(V ) =

(
0

−L2(V2 − V̄ )

)
with V =

(
V1
V2

)
where V1 ∈ Rn1 , V2 ∈ Rn2 (with n1 + n2 = n) and L2 : Rn2 → Rn2 is linear invertible and
such that L2 + tL2 is definite positive. Additional structure assumptions on L2 and on the
matrices Ak will be specified later on.

1.1. Reduction of the problem. Denoting Z , V − V̄ and LZ , −H(V̄ +Z) (with H
as in (10)), the system for Z reads

(11) ∂tZ +

d∑
k=1

Ak(V̄ + Z)∂kZ + LZ = 0,

and the corresponding linearized system is thus

(12) ∂tZ +

d∑
k=1

Āk∂kZ + LZ = F with Āk , Ak(V̄ ) for k = 1, · · · , d.

In the Fourier space, the above system recasts in

∂tẐ + i
d∑

k=1

ĀkξkẐ + LẐ = F̂ .

The symmetry of the matrices Āj ensures that for all ξ ∈ Rd, the matrix

(13) A(ξ) , i
d∑

k=1

Ākξk

is skew Hermitian, while the symmetric part of L is nonnegative. Denoting by A(D) (resp.
B(D)) the Fourier multiplier of symbol1 A (resp. L), System (12) rewrites

(14) ∂tZ +A(D)Z +B(D)Z = F.

The analysis we present below is valid in the more general situation where:

• A(D) is a homogeneous (matrix-valued) Fourier multiplier of degree α that satisfies

(15) Re
(
A(ω)η · η

)
= 0 for all ω ∈ Sd−1 and η ∈ Cn,

where · designates the Hermitian scalar product in Cn,
• B(D) is an homogeneous (matrix-valued) Fourier multiplier of degree β, such that,

for some positive real number κ,

(16) Re
(
B(ω)η · η

)
≥ κ|B(ω)η|2 for all ω ∈ Sd−1 and η ∈ Cn.

1Throughout the text, we agree that A(D) , F−1AF , where F stands for the Fourier transform with
respect to the variable x.
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As a first example, if one considers the linearized damped compressible Euler equations
about (%, v) = (1, 0) in the case P ′(1) = 1, namely

(17)

{
∂ta+ divu = f in R+ × Rd,

∂tu+∇a+ fu = g in R+ × Rd,
then we have n1 = 1, n2 = d, and the Fourier multipliers A and B read:

A(ξ) = i

(
0 ξ
tξ 0

)
and B(ξ) = f

(
0 0
0 Id

)
·

They are of order 1 and 0, respectively. Clearly, (15) holds true, as well as (16) with
κ = f−1.

As a second example, consider the linearized compressible Navier-Stokes equations about
(%, v) = (1, 0). Denoting µ̄ , µ(%̄) and λ̄ , λ(%̄), they read

(18)

{
∂ta+ divu = f in R+ × Rd,

∂tu+∇a− µ∆u− (λ+ µ)divu = g in R+ × Rd.
We still have n1 = 1, n2 = d, but the Fourier multipliers A and B now read:

A(ξ) = i

(
0 ξ
tξ 0

)
and B(ξ) =

(
0 0
0 µ̄|ξ|2 Id + (λ̄+ µ̄)ξ ⊗ ξ

)
·

They are of order 1 and 2, respectively. Both properties (15) and (16) hold true (with κ
depending on λ̄ and µ̄) provided µ̄ > 0 and λ̄+ 2µ̄ > 0.

System (14) may be solved by means of Duhamel’s formula:

(19) Z(t) = T (t)Z(0) +

∫ t

0
T (t− τ)F (τ) dτ,

where (T (t))t≥0 stands for the semi-group associated to operator −(A+B)(D).

The value of T (t) may be computed by going into the Fourier space. Indeed, denote

by Ẑ the Fourier transform of Z with respect to x, and by ξ the corresponding Fourier
variable. Then, in the case F = 0, System (14) rewrites:

∂tẐ + E(ξ)Ẑ = 0 with E(ξ) , A(ξ) +B(ξ).

Hence Ẑ(t, ξ) = exp(−E(ξ)t)Ẑ0(ξ). In other words, we have T (t) = exp(−E(D)t).

In what follows we set for all ω ∈ Sd−1 and ρ > 0,

(20) A(ξ) = ραAω and B(ξ) = κ−1ρβBω with ξ = ρω.

With this notation, we have

(21) Ẑ(t, ξ) = Ẑ(0, ξ) exp

(
− tρ

β

κ

(
κρα−βAω +Bω

))
·

Making the change of variable τ , (tρβ)/κ and r , κρα−β, we discover that z(τ) , Ẑ(t, ξ)
is the solution to

(22) z′ + Er,ωz = 0 with Er,ω , rAω +Bω

since we have

z(τ) = z(0) exp
(
−τEr,ω

)
·

Hence, the case α = 1, β = 0 and κ = 1, is generic at the linear level.
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1.2. Derivation of a Lyapunov functional. The long time behavior of z is closely
connected to the signs of the real part of the eigenvalues of the matrix Er,ω defined in (22).
The method proposed by K. Beauchard and E. Zuazua in [3] (see also [14, 15]), that is
inspired by Kalman’s control theory for linear ODEs supplies a simple way for constructing
an explicit Lyapunov functional and a dissipation term altogether without computing the
eigenvalues.

To explain the construction, fix some r > 0 and ω ∈ Sd−1, and consider the ODE (22)
satisfied by z. Combining the assumptions (15) and (16) with the renormalization (20)
ensures that

(23) Re ((Aωη) · η) = 0 and Re ((Bωη) · η) ≥ |Bωη|2 for all (ω, η) ∈ Sd−1 × Cn.

Hence, taking the Hermitian product in Cn of (22) with z and keeping the real part yields

(24)
1

2

d

dt
|z|2 + |Bωz|2 ≤ 0.

If Bω has rank strictly smaller than n, then the above inequality does not ensure decay
of all the components of z (even though this decay exists whenever r > 0 and ω ∈ Sd−1
are such that the real parts of all the eigenvalues of the matrix Er,ω are positive). To
recover the decay (if any) for the ‘missing components’ of the solution, one can start with
the identity

(Bωz)
′ + (rBωAω +B2

ω)z = 0.

Hence, taking the Hermitian product with BAz (we drop the index ω for better readability),
we obtain

Bz′·BAz + r|BAz|2 +B2z ·BAz = 0.

Similarly, we have

Bz·BAz′ + rBz·BA2z +Bz·B2Az = 0,

whence
d

dt
(Bz ·BAz) + r|BAz|2 +B2z·BAz +Bz·B2Az = −rBz·BA2z.

Remembering (24) and using several times the obvious inequality

2 Re (a· b) ≤ K|a|2 +K−1|b|2

with suitable values of K, we discover that one can find some ε1 (that can be taken
arbitrarily small) such that

(25)
d

dt

(
|z|2 + ε1 min(r, r−1) Re (Bz ·BAz)

)
+ |Bz|2 + ε1 min(1, r2)|BAz|2

≤ Cε1 min(1, r2)|BA2z|2.

In the case BA2 6= 0, we need (at least) one more relation to handle the term in the
right-hand side. For that, one can start from the equation

(BAz)′ + (rBA2 +BAB)z = 0

and take the Hermitian scalar product with BA2z, adding up the resulting identity multi-
plied by a small enough ε2 to (25), then iterate the procedure. The fundamental observation
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of Beauchard and Zuazua in [3] is that Cayley-Hamilton theorem ensures the existence of
complex numbers c0, · · · , cn−1 so that

An =
n−1∑
k=0

ckA
k.

Consequently, one can end the process after at most n steps. In the end, we get positive pa-
rameters ε0 = 1 and ε1, · · · , εn−1 (that are defined inductively and can be taken arbitrarily
small) such that for all ω ∈ Sd−1 and r > 0, we have

(26)
d

dt
Lr,ω(z) +

min(1, r2)

2

n−1∑
`=0

ε`|BωA`ωz|2 ≤ 0

with Lr,ω(z) , |z|2 + min(r, r−1)
n−1∑
`=1

ε` Re (BωA
`−1
ω z·BωA`ωz)

and, additionally,

(27)
1

2
|z|2 ≤ Lr,ω(z) ≤ 2|z|2.

Consequently, denoting Nω , inf
{n−1∑
`=0

ε`|BωA`ωx|2 , x ∈ Sd−1
}
, we conclude from (26) and

(27) that

(28) Lr,ω(τ) ≤ e−
1
4
min(1,r2)NωτLr,ω(0) ω ∈ Sd−1, r > 0.

In the particular case where

(29) Nω > 0 for all ω ∈ Sd−1,

(the only situation that will be considered in these notes) then Nω is actually bounded
away from zero owing to the compactness of the sphere. Hence, (28) implies that there
exists a positive constant c such that for all r > 0 and ω ∈ Sd−1, we have

Lr,ω(τ) ≤ e−2cmin(1,r2)τLr,ω(0), τ ≥ 0.

Then, using once more (27) and reverting to the original unknown Ẑ, we conclude that

(30) |Ẑ(t, ξ)| ≤ 2e−cmin(κ−1|ξ|β ,κ|ξ|2α−β)t|Ẑ0(ξ)|.

In other words, if (29) holds then:

• either α > β, and we are in a partially dissipative regime similar to that of linearized
compressible Euler equations,
• or α < β, and we are in a partially diffusive regime analogous to that of the

linearized compressible Navier-Stokes equations.

It has been pointed out in [3] that (29) is equivalent to the Shizuta-Kawashima condition.
The following lemma stresses the link between those two conditions, the strict dissipativity
of System (11) and Kalman’s condition for observability.

Lemma 1.1. Let A and B be two n × n complex valued matrices. Assume that A is
skew-symmetric in the meaning of (15) and that B is nonnegative in the sense of (16).
The following properties are equivalent:
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(1) For all positive ε0, · · · , εn−1, we have

n−1∑
`=0

ε`|BA`η|2 > 0 for all η ∈ Sn−1.

(2) We have the Kalman rank property, namely the n2 × n matrix

(
B
BA
...

BAn−1

)
has rank

equal to n.

(3) The (SK) condition holds true, namely the intersection between kerB and the linear
space of all eigenvectors of A is reduced to {0}.

(4) All eigenvalues of A+B have positive real parts.

Proof. The equivalence between the first three items is basic linear algebra (see details in
e.g. [3]), while Inequality (28) (with Aω = A, Bω = B and r = 1) ensures equivalence
with the last item. �

As an example, let us again consider the linearized compressible Euler equations (17).
As said before, (15) and (16) are satisfied with α = 1, β = 0, κ = f−1. Furthermore, we
have

Aω = i

(
0 ω
tω 0

)
and Bω =

(
0 0
0 Id

)
, so that BωAω = i

(
0 0
tω 0

)
·

Hence
(

Bω
BωAω

)
has rank d + 1 and Kalman rank condition is thus satisfied, which gives

eventually

|Ẑ(t, ξ)| ≤ 2e−cmin(f,f−1|ξ|2)t|Ẑ0(ξ)| for all ξ ∈ Rd and t ≥ 0.

Since we do not need higher powers of Aω to ensure the Kalman rank condition, one can
suspect that one can restrict the sum in the definition of the Lyapunov function Lr,ω to only
one term (` = 1). Now, the reader may observe by direct computation that BωA

2
ω = A2

ωBω.
Hence

−Bωz·BωA2
ωz = −Bωz·A2

ωBωz ≤ C|Bωz|2

and taking ε1 sufficiently small in (25) allows to just have

d

dt

(
|z|2 + ε1 min(r, r−1) Re (Bωz ·BωAωz)

)
+ |Bωz|2 + ε1 min(1, r2)|BωAωz|2 ≤ 0.

One can be more explicit : since z = (â, û) and ξ = rω, we have

min(r, r−1)Bωz·BωAωz = min(1, |ξ|−2)(û· (iξ)â) = min(1, |ξ|−2)(û· (D̂a)).

Hence, we conclude that the Lyapunov functional is of the form

L(ξ) = |â|2 + |û|2 + ε1 min(1, |ξ|−2) Re (û· (D̂a)).

Combining with Fourier-Plancherel theorem, one can conclude that in order to recover
the full dissipative properties of the linearized compressible Euler equations, it suffices to
consider the functional

‖a‖2L2 + ‖u‖2L2 + ε1

∫
Rd
u· (Id −∆)−1∇a dx

with suitably small ε1 or, rather, spectrally localized versions of it.

Similar computations are valid for the linearized compressible Navier-Stokes equations
(18). The reader may find more details in [13].
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1.3. Derivation of a priori estimates. Let us assume from now on that κ = 1, α = 1
and β = 1 in (14) (since the general case α 6= β reduces to that one). Recall Duhamel’s
formula (19). Combining with (30), we get

|Ẑ(t, ξ)| ≤ 2

(
e−cmin(1,|ξ|2)t|Ẑ0(ξ)|+

∫ t

0
e−cmin(1,|ξ|2)(t−τ)|F̂ (τ, ξ)| dτ

)
·

Clearly, if one wants to get optimal estimates then low and high frequencies have to be
treated differently. To proceed, we shall actually use a more accurate decomposition of
the Fourier space, namely a dyadic homogeneous Littlewood-Paley decomposition (∆̇j)j∈Z
defined by ∆̇j , ϕ(2−jD). Here, ϕ is a smooth nonnegative function on Rd, supported in

(say) the annulus {ξ ∈ Rd, 3/4 ≤ |ξ| ≤ 8/3} and satisfying∑
j∈Z

ϕ(2−jξ) = 1, ξ 6= 0.

By construction, ∆̇j is a localization operator in the vicinity of frequencies of magnitude

2j . Since ∆̇j commutes with any Fourier multiplier, each Zj , ∆̇jZ satisfies (14) with

source term Fj , ∆̇jF and initial data Z0,j , ∆̇jZ0. Therefore, we have

Zj(t) = T (t)Z0,j +

∫ t

0
T (t− τ)Fj(τ) dτ,

whence, as |ξ| ' 2j on Supp Ẑj , we have (changing slightly c if needed),

|Ẑj(t, ξ)| ≤ 2

(
e−cmin(1,22j)t|Ẑj,0(ξ)|+

∫ t

0
e−cmin(1,22j)(t−τ)|F̂j(τ, ξ)| dτ

)
·

Consequently, after taking the L2(Rd) norm of both sides, then using Minkowski inequality
and Fourier-Plancherel theorem, we end up with:

‖Zj(t)‖L2 ≤ 2

(
e−cmin(1,22j)t‖Z0,j‖L2 +

∫ t

0
e−cmin(1,22j)(t−τ)‖Fj(τ)‖L2 dτ

)
,

whence

(31) ‖Zj(t)‖L2 + cmin(1, 22j)

∫ t

0
‖Zj‖L2 dτ ≤ 2

(
‖Z0,j‖L2 +

∫ t

0
‖Fj(τ)‖L2 dτ

)
·

At this stage, two important observations are in order. First, note that

‖Z‖Ḣs '
(∑
j∈Z

22js‖Zj‖2L2

)1/2

.

Hence, in order to get a Sobolev estimate of Z, it suffices to multiply (31) by 2js then
to perform an `2 -summation on j ∈ Z. However, the second term of (31) will not exactly

give an estimate in some space L1(0, t; Ḣσ) since the time integration has been performed
before the summation with respect to j : one ends up in one of the Chemin-Lerner (or
‘tilde’) spaces that have been introduced in [9]. They turn out to be delicate to manipulate
and not adapted to the critical regularity setting we have in mind.

The second observation is that, owing to the factor min(1, 22j), in order to track as much
information as possible, it is suitable to work with different regularity exponents for low
and high frequencies.

Putting the two observations together, this motivates us to multiply (31) by 2js with a
different value of the ‘regularity exponent’ s for negative and positive j ’s, then to perform
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an `1 summation with respect to j. The advantage of `1 summation – that corresponds
to Besov norms with last index 1 – is that one can freely exchange time integration and
summation on j. Taking into account the possible difference of regularity between the low
and high frequencies leads us to introduce for all pair (s, s′) ∈ R2 the hybrid Besov space

B̃s,s′

2,1 , that is the set of all tempered distributions z such that

(32) ‖z‖
B̃s,s

′
2,1

,
∑
j<0

2js‖∆̇jz‖L2 +
∑
j≥0

2js
′‖∆̇jz‖L2 <∞ and lim

j→−∞
‖χ(2−jD)z‖L∞ = 0.

Above, χ stands for a compactly supported smooth function on Rd such that χ(0) = 1,
and the condition on χ(2−jD)z implies that z has to tend to 0 at ∞ in the sense of
tempered distributions2. Classical homogenous Besov spaces correspond to s = s′ and will
be denoted by Ḃs

2,1.

In what follows, it will be sometimes convenient to use the following notation for all
σ ∈ R :

‖z‖`
Ḃσ2,1
,
∑
j<0

2jσ‖∆̇jz‖L2 and ‖z‖h
Ḃσ2,1
,
∑
j≥0

2jσ‖∆̇jz‖L2 .

Even though most of the functions we shall consider here will have range in the set of
vectors or even matrices, we shall keep the same notation for Besov spaces pertaining to
this case.

Now, multiplying (31) by 2js (resp. 2js
′
) for j ≤ 1 (resp. j ≥ 0) and summing up on

j ≤ 1 (resp. j ≥ 0) leads to

‖Z(t)‖`
Ḃs2,1

+

∫ t

0
‖Z‖`

Ḃs+2
2,1

dτ ≤ 2

(
‖Z0‖`Ḃs2,1 +

∫ t

0
‖F‖`

Ḃs2,1
dτ

)
,(33)

‖Z(t)‖h
Ḃs
′

2,1

+

∫ t

0
‖Z‖h

Ḃs
′

2,1

dτ . 2

(
‖Z0‖hḂs′2,1

+

∫ t

0
‖F‖h

Ḃs
′

2,1

dτ

)
·(34)

Hence, putting together those two inequalities yields

(35) ‖Z(t)‖
B̃s,s

′
2,1

+

∫ t

0

(
‖Z‖`

Ḃs+2
2,1

+ ‖Z‖h
Ḃs
′

2,1

)
dτ ≤ 2

(
‖Z0‖B̃s,s′2,1

+

∫ t

0
‖F‖

B̃s,s
′

2,1

dτ

)
·

Since a part of the solution experiences direct dissipation, one can suspect the low frequency
integrability we get in this way to be not optimal. Recovering better integrability for a part
of the solution is the goal of the next subsection.

1.4. The damped mode. Assume that the system has an orthogonal block structure,
that is independent of the frequency, namely

rankBω
⊥
⊕KerBω = Cn for all ω ∈ Sn−1,

with M , KerBω independent of ω.

Denote by P the orthogonal projector onto M⊥ and set

(36) W , P(A+B)(D)Z.

Since P and B commute, we get the following equation for W :

∂tW +B(D)W = P(A+B)(D)F − PA(D)(A+B)(D)Z.

2This is a way to rule out polynomials from homogeneous Besov spaces, otherwise one would have to
work modulo polynomials which is not suitable when studying PDEs.
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Because

PA(D)B(D)Z = PA(D)PB(D)Z = PA(D)W − (PA(D))2Z,

this may be rewritten:

(37) ∂tW +B(D)W = P(A+B)(D)F − PA(D)W + (PA(D))2Z − PA2(D)Z.

As A(D) and B(D) are of order 1 and 0, respectively, multipliers of orders 1 and 2, act
on W and Z in the right-hand side. Hence the low frequencies of the corresponding terms
are expected to be negligible compared to the left-hand side of (37).

To make this heuristics rigorous, let us look at the equation for Wj , ∆̇jW, namely

(38) ∂tWj +B(D)Wj = P(A+B)(D)Fj − PA(D)Wj + (PA(D))2Zj − PA2(D)Zj .

Taking the Hermitian scalar product in Cn with Wj , using (16), the fact that B(D) is
0-order and that A(D) is 1-st order yields

1

2

d

dt
|Ŵj |2 + |Ŵj |2 ≤ C

(
(1 + |ξ|)|F̂j |+ |ξ||Ŵj |+ |ξ|2|Ẑj |

)
|Ŵj |.

Hence, integrating on Rd and taking advantage of the Fourier-Plancherel theorem yields:

1

2

d

dt
‖Wj‖2L2 + ‖Wj‖2L2 ≤ C‖Wj‖L2

(
(1 + 2j)‖Fj‖L2 + 2j‖Wj‖L2 + 22j‖Zj‖L2

)
from which we eventually get for all t ≥ 0 and j ∈ Z, owing to Lemma A.1,

‖Wj(t)‖L2 +

∫ t

0
‖Wj‖L2 dτ ≤ ‖Wj(0)‖L2

+C(1 + 2j)

∫ t

0
‖Fj‖L2 dτ + C2j

∫ t

0
‖Wj‖L2 dτ + C22j

∫ t

0
‖Zj‖L2 dτ.

Therefore, if we multiply by 2js and sum up on j ≤ j0 with j0 chosen so that C2j0 ≤ 1/2,
then we end up with∑
j≤j0

2js‖Wj(t)‖L2 +
1

2

∫ t

0

∑
j≤j0

2js‖Wj‖L2 dτ ≤
∑
j≤j0

2js‖Wj(0)‖L2

+C

∫ t

0

∑
j≤j0

2js‖Fj‖L2 dτ + C
∑
j≤j0

∫ t

0
2j(s+2)‖Zj‖L2 dτ.

The last term may be controlled by the data according to (33). Furthermore, ‖Wj‖L2 .
‖Zj‖L2 for all j < 0, and 2j(s+2) ' 2js for j0 ≤ j < 0. Hence the above inequality still
holds if one sums up to j = 0. In the end, this allows us to get the following additional
bound:

‖W (t)‖`
Ḃs2,1

+

∫ t

0
‖W‖`

Ḃs2,1
dτ . ‖Z0‖`Ḃs2,1 +

∫ t

0
‖F‖`

Ḃs2,1
dτ.

Let us finally look at the part of Z that undergoes direct dissipation, namely Z2 , PZ.
We claim that, as expected, the low frequencies of Z2 have better time integrability than
the overall solution Z. Indeed, observing that B(D)Z2 = W − PA(D)Z and that PB(D)
(restricted to functions defined on M ) is invertible, we may write

Z2 = ((PB)(D))−1W − ((PB)(D))−1PA(D)Z.
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Hence, since (PB)(D) (resp. A(D)) is a 0-order (resp. 1-st order) Fourier multiplier, we
may write

‖Z2‖`Ḃs+1
2,1
. ‖W‖`

Ḃs+1
2,1

+ ‖Z‖`
Ḃs+2

2,1
and ‖Z2‖`Ḃs2,1 . ‖W‖

`
Ḃs2,1

+ ‖Z‖`
Ḃs+1

2,1
.

Then, remembering (33) and using Hölder inequality and interpolation in Besov spaces
when needed yields

‖Z2‖`L2(R+;Ḃs2,1)
+ ‖Z2‖`L1(R+;Ḃs+1

2,1 )
. ‖Z0‖`Ḃs2,1 +

∫ t

0
‖F‖`

Ḃs2,1
dτ.

This has to be compared by the following (optimal) inequality for Z :

‖Z‖`
L2(R+;Ḃs+1

2,1 )
+ ‖Z2‖`L1(R+;Ḃs+2

2,1 )
. ‖Z0‖`Ḃs2,1 +

∫ t

0
‖F‖`

Ḃs2,1
dτ.

1.5. An Lp approach. In this part, we are going to show that under slightly stronger
structure assumptions3 on the linear system (12) than those that have been made so far, it
is possible to bound the low frequencies of the solution on functional spaces built on Lp for
any p ∈ [1,∞]. This unusual setting is in sharp contrast with the non dissipative case. In
fact, as pointed out by P. Brenner in [7], apart from the notable exception of the transport
equation, ‘most’ first order ‘purely’ hyperbolic systems are ill-posed in Lp if p 6= 2. It turns
out that for nonlinear partially dissipative systems satisfying the structure assumptions of
this part, it is also possible to use, at least partially, an Lp type framework (see details in
[10, 12]). This offers one more degree of freedom in the choice of solutions spaces allowing
not only to prescribe weaker smallness conditions for global well-posedness, but also to get
more accurate informations on the qualitative properties of the constructed solutions.

In order to proceed, let us assume without loss of generality that M = Rn1 × {0} and

decompose Z ∈ Rn into

(
Z1

Z2

)
. For expository purpose, further assume that there is no

source term (F = 0). Then, System (11) may be rewritten by blocks as follows:

(39)
d

dt

(
Z1

Z2

)
+

(
A11(D) A12(D)
A21(D) A22(D)

)(
Z1

Z2

)
+

(
0

B22(D)Z2

)
=

(
0
0

)
,

where the 0-order Fourier multiplier B22(D) has symbol in Mn2(R), and so on.

In the spirit of the computations of the previous paragraph, let us introduce

(40) W , Z2 + (B−122 A21)(D)Z1 + (B−122 A22)(D)Z2.

This definition of a damped mode is consistent with the one we had before: we just applied to
(36) the 0-order operator (B22(D))−1 that corresponds to the inverse of PB(D) restricted
to M. Now, we note that

∂tZ2 +B22(D)W = 0

and that from the definition of Z , we have

∂tW +B22(D)W = (B−122 A11)(D)∂tZ1 + (B−122 A22)(D)∂tZ2.

Hence, using System (39) for computing ∂tZ, we get the following equation:

(41) ∂tW +B22(D)W = −(B−122 A21)(D)
(
A11(D)Z1 +A12(D)Z2

)
− (B−122 A22B22)(D)W.

Rewriting the equation of Z1 in terms of W yields

(42) ∂tZ1 +
(
A11(D)− (A12B

−1
22 A21)(D)

)
Z1 = (A12B

−1
22 A22)(D)Z2 −A12(D)W.

3That are in particular satisfied by the linearized Euler equations with relaxation.
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In order to pursue our analysis, we make the following assumption:

(43) A11(D) ≡ 0 and A(D) , −(A12B
−1
22 A21)(D) is a positive operator.

By positive, we mean that the symbol A12B
−1
22 A21 has range in the set of positive Hermitian

matrices of size n2. For this particular structure, the above hypothesis turns out to be
equivalent to Condition (SK) (see Lemma A.3).

Then, after applying ∆̇j to (41) and for (42), we obtain:

(44)

{
∂tZ1,j +A(D)Z1,j = (A12B

−1
22 A22)(D)Z2,j −A12(D)Wj ,

∂tWj +B22(D)Wj = −(B−122 A21A12)(D)Z2,j − (B−122 A22B22)(D)Wj .

Using Duhamel formula for computing Z1,j from the first equation of (44), we get

Z1,j(t) = e−tA(D)Z1,j(0) +

∫ t

0
e−(t−τ)A(D)

(
(A12B

−1
22 A22)(D)Z2,j(τ)−A12(D)Wj(τ)

)
dτ.

Since A(D) is second order positive and satisfies the assumptions of Lemma A.2, there
exist two constants c and C such that the following bound holds:

(45) ‖e−tA(D)∆̇jz‖Lp(Rn1 ;Rn1 ) ≤ Ce−c2
2jt‖∆̇jz‖Lp(Rn1 ;Rn1 ), j ∈ Z.

Then, we get from Bernstein inequality (151), remembering that all the blocks of A(D) are
homogeneous multipliers of degree 1 and that B−122 (D) is homogeneous of degree 0,

‖Z1,j(t)‖Lp . e−c2
2jt‖Z1,j(0)‖Lp +

∫ t

0
e−c2

2j(t−τ)(22j‖Z2,j(τ)‖Lp + 2j‖Wj(τ)‖Lp
)
dτ,

whence taking the supremum or the integral on [0, t],

‖Z1,j(t)‖Lp + 22j
∫ t

0
‖Z1,j‖Lp dτ . ‖Z1,j(0)‖Lp +

∫ t

0

(
22j‖Z2,j‖Lp + 2j‖Wj‖Lp

)
dτ.

Similarly, Lemma A.3 guarantees that we have

(46) ‖e−tB22(D)∆̇jz‖Lp(Rn2 ;Rn2 ) ≤ Ce−ct‖∆̇jz‖Lp(Rn2 ;Rn2 ), j ∈ Z,

which allows to get eventually

‖Wj(t)‖Lp +

∫ t

0
‖Wj‖Lp dτ . ‖Wj(0)‖Lp + 22j

∫ t

0
‖Zj‖Lp dτ + 2j

∫ t

0
‖Wj‖Lp dτ.

Owing to the factor 2j , there exists an integer j0 ∈ Z so that the last term may be absorbed
by the left-hand side for all j ≤ j0. Hence, multiplying by 2js then summing up on j ≤ j0
yields, with the notation ‖z‖`,j0

Ḃsp,1
,
∑

j≤j0 2jσ‖∆̇jz‖Lp ,

(47) ‖W (t)‖`,j0
Ḃsp,1

+

∫ t

0
‖W‖`,j0

Ḃsp,1
dτ . ‖W0‖`,j0Ḃsp,1

+

∫ t

0
‖Z‖`,j0

Ḃs+2
p,1

dτ

while the inequality for Z1 gives us

(48) ‖Z1(t)‖`,j0Ḃsp,1
+

∫ t

0
‖Z1‖`,j0Ḃs+2

p,1

dτ . ‖Z1,0‖`,j0Ḃsp,1
+

∫ t

0

(
‖Z2‖`,j0Ḃs+2

p,1

+ ‖W‖`,j0
Ḃs+1
p,1

)
dτ.

The definition of W in (40) ensures that for all j ≤ j0 (with negative enough j0 ), there
holds that

(49) ‖Wj‖Lp . ‖Z2,j‖Lp + 2j‖Z1,j‖Lp and ‖Z2,j‖Lp . ‖Wj‖Lp + 2j‖Z1,j‖Lp .
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Hence, adding up ε·(47) to (48) with ε small enough and negative enough j0 , we conclude
that

‖Z(t)‖`,j0
Ḃsp,1

+

∫ t

0

(
‖Z1‖`,j0Ḃs+2

p,1

+ ‖W‖`,j0
Ḃsp,1

)
dτ . ‖Z0‖`,j0Ḃsp,1

.

Of course, combining with (49) yields also∫ t

0
‖Z2‖`,j0Ḃs+1

p,1

dτ . ‖Z0‖`,j0Ḃsp,1
.

By the same token, if we consider a source term F in (39), one gets the following bound:

‖Z(t)‖`,j0
Ḃsp,1

+

∫ t

0

(
‖Z1‖`,j0Ḃs+2

p,1

+ ‖Z2‖`,j0Ḃs+1
p,1

+ ‖W‖`,j0
Ḃsp,1

)
dτ . ‖Z0‖`,j0Ḃsp,1

+

∫ t

0
‖F‖`,j0

Ḃsp,1
dτ,

which is actually the same as the one we proved before for p = 2.

At the linear level, there is no restriction on the value of p : it can be any element of
[1,∞]. Reverting to the initial nonlinear system (11), it is possible to work out a functional
framework of Lp type for the low frequencies of the solution. However, owing to the
interactions between the low and high frequencies through the nonlinear terms, there are
some restrictions on p. The most obvious one is that, if combining Bernstein and Hölder
inequalities for estimating the medium frequencies in a L2 type space of a product of low
frequencies that belong to a Lp type space, one needs to have p ∈ [2, 4]. In high dimension,
there are stronger restrictions on p. The reader is referred to [10, 12] for more details and
complete statements.

2. Global existence in the critical regularity setting

The principal aim of this section is to prove the global existence of strong solutions for
(9) supplemented with initial data that are a perturbation of a constant state V̄ satisfying
Condition (SK). For notational simplicity, we assume that V̄ = 0 so that the system under
consideration reads4

(50) ∂tZ +
d∑

k=1

Ak(Z) · ∂kZ +BZ = 0.

It is assumed that the (smooth) given functions A1, · · · , Ad range in the set of n× n real

symmetric matrices, and that B =

(
0 0
0 L2

)
with L2 ∈ GLn2(R) satisfying for some c > 0,

(51) L2z · z ≥ c|z|2, z ∈ Rn2 .

Set A(ξ) , i
∑d

k=1 ξkĀ
k with Āk , Ak(0), and B(ξ) , B. According to the linear analysis

that was performed in the previous paragraph in the context of System (50), Condition
(SK) is equivalent to:

(52) Rank


B(ξ)
BA(ξ)
. . .

BAn−1(ξ)

 = n for all ξ ∈ Rd \ {0}.

4The reader is referred to [11] for the proof of similar results for more general symmetrizable quasilinear
partially dissipative hyperbolic systems satisfying (SK).
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2.1. The main results. In order to find out a suitable functional framework for solving
(50), let us temporarily consider a smooth solution Z. Taking advantage of the symmetry
of the matrices Ak and integrating by parts, one gets the following ‘energy identity’:

1

2

d

dt
‖Z‖2L2 −

1

2

∑
k,`,m

∫
Rd
Z`Zm∂k(A

k
`m(Z)) dx+

∫
Rd
BZ · Z dx = 0.

Therefore, combining with (51) and Gronwall inequality, we discover that

‖Z(t)‖2L2 + c

∫ t

0
‖Z2‖2L2 dτ ≤ ‖Z0‖2L2 exp

(
C

∫ t

0
‖∇Z‖L∞ dτ

)
·

Hence, even for controlling the L2 norm of the solution, a bound of ∇Z in L1
loc(R+;L∞)

is needed. Since no gain of regularity can be expected on the whole solution (see (34)), we
must assume that Z0 belongs to a functional space X that is embedded in the set of globally
Lipschitz functions. If X = Hs then this embedding holds if and only if s > d/2+1. In the
framework of Besov spaces with last index 1, one can reach the critical index s = d/2 + 1,
owing to the (critical) embedding

(53) Ḃ
d
2
2,1(R

d) ↪→ Cb(Rd).

Hence, X must be a subspace of Ḃ
d
2
+1

2,1 . Consequently, we shall take s′ = 1 + d/2 in (34).

As regards the value of the regularity exponent s in (33) for the low frequencies, a
natural candidate is s = −1 + d/2 since (33) and (34) together give us a control of Z in

L1(R+; Ḃ
d
2
+1

2,1 ) (provided we succeed in bounding in L1(R+; Ḃ
d
2
−1

2,1 ) the nonlinear term F ),

and thus of ∇Z in L1(R+;L∞). Having at our disposal global L1 -in-time estimates for the
solution will be particularly comfortable for further analysis in contrast with the classical
‘Sobolev’ approaches for partially dissipative systems where only L2 -in time estimates are
available.

To make a long story short, a good candidate for a solution space is the set of functions
Z in C1b (R+ × Rd;Rn) such that

Z` ∈ Cb(R+; Ḃ
d
2
−1

2,1 ) ∩ L1(R+; Ḃ
d
2
+1

2,1 ) and Zh ∈ Cb(R+; Ḃ
d
2
+1

2,1 ) ∩ L1(R+; Ḃ
d
2
+1

2,1 ).

According to the linear analysis presented before, one can expect to get additional informa-
tions for low frequencies, through the damped mode W defined in (40), that is essentially
equivalent to ∂tZ2 in our context. We will eventually obtain the following result that will
be proved in the next subsection.

Theorem 2.1. Let the Conditions (51) and (52) be in force and assume that d ≥ 2. Then,

there exists a positive constant α such that for all Z0 ∈ B̃
d
2
−1, d

2
+1

2,1 satisfying

(54) Z0 , ‖Z0‖
B̃
d
2−1, d2+1

2,1

≤ α,

System (50) supplemented with initial data Z0 admits a unique global-in-time solution Z
in the set

E ,
{
Z ∈ Cb(R+; B̃

d
2
−1, d

2
+1

2,1 ), Z ∈ L1(R+; Ḃ
d
2
+1

2,1 ) and ∂tZ2∈L1(R+; Ḃ
d
2
−1

2,1 )
}
·
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Moreover, there exist an explicit Lyapunov functional, equivalent to ‖Z‖
B̃
d
2−1, d2+1

2,1

and a

constant C depending only on the matrices Ak and on L2 , and such that

(55) Z(t) ≤ CZ0 for all t ≥ 0

where5

(56) Z(t) , ‖Z‖`
L∞t (Ḃ

d
2−1

2,1 )
+ ‖Z‖h

L∞t (Ḃ
d
2+1

2,1 )
+ ‖Z‖

L1
t (Ḃ

d
2+1

2,1 )

+ ‖∂tZ2‖
L1
t (Ḃ

d
2−1

2,1 )
+ ‖Z2‖`

L1
t (Ḃ

d
2
2,1)

+ ‖Z2‖`
L2
t (Ḃ

d
2−1

2,1 )
.

Choosing regularity d/2− 1 for low frequencies has some disadvantages, though:

• it does not allow to treat the mono-dimensional case since the low frequencies of the

nonlinear terms of type DZ ×Z cannot be estimated in L1(R+; Ḃ
d
2
−1

2,1 ) (this is the

needed regularity for the right-hand side of (33)). Indeed, the numerical product

does not map Ḃ
1
2
2,1(R)× Ḃ−

1
2

2,1 (R) to Ḃ
− 1

2
2,1 (R).

• it does not provide us with uniform bounds in the high relaxation asymptotics (see
the beginning of Section 4 for more explanations).

Another possible choice is s = d/2. Then, the solution space becomes the set of Z in
C1b (R+ × Rd;Rn) satisfying

Z` ∈ Cb(R+; Ḃ
d
2
2,1) ∩ L

1(R+; Ḃ
d
2
+2

2,1 ) and Zh ∈ Cb(R+; Ḃ
d
2
+1

2,1 ) ∩ L1(R+; Ḃ
d
2
+1

2,1 )

plus crucial informations from the damped mode that, in particular, will ensure that

∇Z2 ∈ L1(R+; Ḃ
d
2
2,1) and Z2 ∈ L2(R+; Ḃ

d
2
2,1).

This alternative framework allows to consider initial data that are less decaying at in-

finity (regularity Ḃ
d
2
2,1 for low frequencies is less stringent than Ḃ

d
2
−1

2,1 ), to handle the
one-dimensional situation, and to provide crucial uniform a priori bounds in the strong
relaxation limit. The only drawback is that this alternative framework requires seemingly
stronger structure assumptions on the system (that are nevertheless fulfilled by the com-
pressible Euler equations). In order to specify them, let us rewrite System (50) by blocks
as follows:

(57)


∂tZ1 +

d∑
k=1

(
Ak11(Z)∂kZ1 +Ak12(Z)∂kZ2

)
= 0,

∂tZ2 +

d∑
k=1

(
Ak21(Z)∂kZ1 +Ak22(Z)∂kZ2

)
+ L2Z2 = 0.

Then, we need the following additional assumption:

(H3) For all k ∈ {1, · · · , d}, Āk11 = 0 and Z 7→ Ak11(Z) is linear with respect to Z2.

Note that in the context of gas dynamics, the above assumption just means that there are
no terms like ∇% or %∇% in the density equation, which is indeed the case !

5Whenever X is a Banach space, p ∈ [1,∞] and T ≥ 0, notation ‖ · ‖Lp
T
(X) designates the Lebesgue

norm Lp of functions on [0, T ] with values in X.
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Theorem 2.2. In general dimension d ≥ 1, let the assumptions of Theorem 2.1 concerning
system (9) be in force and assume in addition that (H3) holds true. Then, there exists a

positive constant α such that for all Z0 ∈ B̃
d
2
, d
2
+1

2,1 satisfying

(58) Z ′0 , ‖Z0‖
B̃
d
2 ,
d
2+1

2,1

≤ α,

System (57) supplemented with initial data Z0 admits a unique global-in-time solution in

the subspace F of functions Z of Cb(R+; B̃
d
2
, d
2
+1

2,1 ) such that

Z`2, Z
h∈L1(R+; Ḃ

d
2
+1

2,1 ), Z`1∈L1(R+; Ḃ
d
2
+2

2,1 ) and ∂tZ2∈L1(R+; Ḃ
d
2
2,1).

Moreover, there exists an explicit Lyapunov functional that is equivalent to ‖Z‖
B̃
d
2 ,
d
2+1

2,1

and

we have the following bound:

(59) Z ′(t) ≤ CZ ′0 where Z ′(t) , ‖Z‖
L∞t (B̃

d
2 ,
d
2+1

2,1 )
+ ‖Z1‖`

L1
t (Ḃ

d
2+2

2,1 )

+ ‖Z2‖`
L1
t (Ḃ

d
2+1

2,1 )
+ ‖Z2‖`

L2
t (Ḃ

d
2
2,1)

+ ‖Z‖h
L1
t (Ḃ

d
2+1

2,1 )
+ ‖∂tZ2‖

L1
t (Ḃ

d
2
2,1)
.

Theorem 2.2 directly applies to the isentropic compressible Euler equations with relax-
ation, written in terms of the sound speed c and of v (that is, System (5)). The result we
get reads as follows:

Theorem 2.3. Let c̄ > 0, d ≥ 1 and γ > 1. There exists a positive constant α such that

for any data (c0, v0) such that c0 − c̄ and v0 belong to B̃
d
2
, d
2
+1

2,1 , and satisfy

(60) A0 , ‖(c0 − c̄, v0)‖
B̃
d
2 ,
d
2+1

2,1

≤ α,

System (5) with ε = 1 admits a unique global solution (c, v) with (c−c̄, v) ∈ Cb(R+; B̃
d
2
, d
2
+1

2,1 )
that satisfies

(61) ‖(c− c̄, v)‖
L∞(R+;B̃

d
2 ,
d
2+1

2,1 )
+ ‖c− c̄‖`

L1(R+;Ḃ
d
2+2

2,1 )

+ ‖v‖`
L1(R+;Ḃ

d
2+1

2,1 )
+ ‖v‖`

L2(R+;Ḃ
d
2
2,1)

+ ‖(c− c̄, v)‖h
L1(R+;Ḃ

d
2+1

2,1 )
+ ‖∂tv‖

L1(R+;Ḃ
d
2
2,1)
≤ CA0.

A similar statement holds true for the barotropic compressible Euler equations with
general smooth pressure law P satisfying P ′ > 0 in the neighborhood of the reference
density %̄, although one cannot ‘symmetrize’ the system any longer by using the sound
speed. For more details, the reader may refer to [11] where a class of partially dissipative
systems, more general than (9), is considered.

In the rest of this section, we focus on the proof of Theorem 2.1. The reader is referred
to [11] for more general systems and for the proof of Theorem 2.2. A similar statement in
the Lp framework has been established in [12].

2.2. A priori estimates. The overall strategy is to apply the Littlewood-Paley truncation
operator ∆̇j to (50), then to follow the method that has been described in the previous
section so as to get optimal estimates in L2 for each dyadic block. Performing eventually a
suitable weighted summation on j will lead to the control of Besov norms of the solution,
as stated in Theorem 2.1.
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Throughout, we assume that we are given a smooth and sufficiently decaying solution of
(50) on [0, T ]× Rd such that

(62) sup
t∈[0,T ]

‖z(t)‖
Ḃ
d
2
2,1(Rd)

is sufficiently small.

We shall use repeatedly that, owing to the embedding (53), the solution Z is also small in
L∞([0, T ]× Rd).

• Low frequencies. Let us denote Zj , ∆̇jZ and Fj , ∆̇jF, with

(63) F ,
d∑

k=1

(Āk −Ak(Z))∂kZ.

We see that for all j ∈ Z,

(64) ∂tZj +

d∑
k=1

Āk∂kZj +BZj = Fj .

Hence, taking the L2(Rd;Rn) scalar product with Zj and using that the first order terms
are skew-symmetric yields

1

2

d

dt
‖Zj‖2L2 +

∫
Rd
BZj · Zj dx =

∫
Rd
Zj · Fj dx.

The term with B may be bounded from below according to (51). Hence, using Cauchy-
Schwarz inequality for bounding the right-hand side delivers for some c > 0,

1

2

d

dt
‖Zj‖2L2 + c‖Z2,j‖2L2 ≤ ‖Fj‖L2‖Zj‖L2 .

In order to recover the full dissipation, we proceed as in the previous section, introducing
the functional Lr,ω defined in (26). Adapting the computations therein to the case where

the source term in (12) is nonzero, we get for all r > 0 and ω ∈ Sd−1 (with the notations
of (20)):

d

dt
Lr,ω(Ẑj) +

min(1, r2)

2

n−1∑
k=0

εk|BωAkωẐj |2 ≤ Re
(
F̂j · Ẑj

)
+ min(r, r−1)

n−1∑
k=1

(
Re
(
BωA

k−1
ω Ẑj ·BωAkωF̂j

)
+ Re

(
BωA

k−1
ω F̂j ·BωAkωẐj

))
·

In light of Cauchy-Schwarz inequality, the sum in the right-hand side may be bounded by√
Lr,ω(Ẑj)Lr,ω(F̂j). Hence, using that Condition (SK) and (27) ensure the existence of a

positive constant c0 > 0 such that for all r > 0 and ω ∈ Sd−1,

(65)

n−1∑
k=0

εk|BωAkωẐj |2 ≥ 2c0Lr,ω(Ẑj),

we conclude that

(66)
d

dt
Lr,ω(Ẑj) + c0 min(1, r2)Lr,ω(Ẑj) ≤

√
Lr,ω(Ẑj)Lr,ω(F̂j).
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Let us denote for all j ∈ Z,

Lj , ‖Ẑj‖2L2 +

n−1∑
k=1

εk Re

∫
Rd

(BAk−1ω Ẑj(ξ)) · (BAkωẐj(ξ)) min(|ξ|, |ξ|−1) dξ.

Integrating (66) on Rd and observing that, by virtue of (27), we have

(67)
1

2
‖Zj‖2L2 ≤ Lj ≤ 2‖Zj‖2L2 ,

we get, up to a slight modification of c0,

(68)
d

dt
Lj + c0 min(1, 22j)Lj ≤ C‖Fj‖L2

√
Lj .

Therefore, taking X =
√
Lj and A = C‖Fj‖L2 in Lemma A.1, then multiplying by 2j(

d
2
−1)

delivers for all j < 0,

2j(
d
2
−1)
√
Lj(t) +

c0
2

2j(
d
2
+1)

∫ t

0

√
Lj dτ ≤ 2j(

d
2
−1)
√
Lj(0) + C2j(

d
2
−1)
∫ t

0
‖Fj‖L2 dτ.

In order to bound the right-hand side, it suffices to combine the following facts that are
proved in e.g. [2, Chap. 2]:

(69) For d ≥ 2, the numerical product maps Ḃ
d
2
−1

2,1 (Rd)× Ḃ
d
2
2,1(R

d) to Ḃ
d
2
−1

2,1 (Rd)

and, for all smooth function Φ : Rd → Rp vanishing at 0,

(70) ‖Φ(Z)‖
Ḃ
d
2
2,1

≤ C(‖Z‖L∞)‖Z‖
Ḃ
d
2
2,1

.

Hence, remembering also (62), we conclude that

‖F‖
Ḃ
d
2−1

2,1

. ‖Z‖
Ḃ
d
2−1

2,1

‖∇Z‖
Ḃ
d
2
2,1

.

So, finally, there exist two positive constants c0 and C such that for all j < 0, we have

(71) 2j(
d
2
−1)
√
Lj(t) + c02

j( d
2
+1)

∫ t

0

√
Lj dτ ≤ 2j(

d
2
−1)
√
Lj(0)

+ C

∫ t

0
cj‖∇Z‖

Ḃ
d
2
2,1

‖Z‖
Ḃ
d
2−1

2,1

dτ with
∑
j∈Z

cj = 1.

• High frequencies. In order to bound the high frequency part of the solution, we shall
keep the functional Lj , but one cannot look at F defined in (63) as a source term since
this would entail a loss of one derivative. To overcome the difficulty, we mimic the proof of
the L2 estimate recalled at the beginning of this section, writing the system for Zj , ∆̇jZ
as follows:

(72) ∂tZj +

d∑
k=1

Ak(Z)∂kZj +BZj =

d∑
k=1

[Ak(Z), ∆̇j ]∂kZ.

Then, taking the L2(Rd;Rn) scalar product with Zj and integrating by parts yields:

1

2

d

dt
‖Zj‖2L2+

∫
Rd
BZj ·Zj dx =

1

2

∑
k,`,m

∫
Rd
∂k(A

k
`m(Z))Z`j Z

m
j dx+

d∑
k=1

∫
Rd

[Ak(Z), ∆̇j ]Z ·Zj dx.
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The last sum may be bounded according to the following classical commutator estimate
(see e.g. [2, Chap. 2]) that is valid for all s ∈ (−d/2, d/2 + 1]:

‖[Ak(Z), ∆̇j ]∂kZ‖L2 ≤ Ccj2−js‖∇(Ak(Z))‖
Ḃ
d
2
2,1

‖Z‖Ḃs2,1 with
∑
j∈Z

cj = 1.

Thanks to the embedding (53) and to the definition of ‖ · ‖Ḃs2,1 , we have∑
k,`,m

∫
Rd
∂k(A

k
`m(Z))Z`j Z

m
j dx ≤ Ccj2−js‖∇(Ak(Z))‖

Ḃ
d
2
2,1

‖Z‖Ḃs2,1‖Zj‖L2 .

Hence, owing to (51), we have for all s ∈ (−d/2, d/2 + 1],

(73)
1

2

d

dt
‖Zj‖2L2 + c‖Z2,j‖2L2 ≤ Ccj2−js‖∇Z‖

Ḃ
d
2
2,1

‖Z‖Ḃs2,1‖Zj‖L2 .

To recover the full dissipation, one has to compute for all r ≥ 1 and ω ∈ Sd−1, the time
derivative of

r−1L̃r,ω(Ẑj) with L̃r,ω(Ẑj) ,
n−1∑
k=1

εk Re (BAk−1ω Ẑj ·BAkω)

as it will generate the term
∑n−1

k=1
εk
2 |BA

k
ωẐj |2, that is, the missing dissipation. To proceed,

one can keep F defined in (63) as a source term and start from (64). For j ≥ 0, the
term r−1 yields the factor 2−j that exactly compensates the loss of one derivative when

estimating F in Ḃ
d
2
+1

2,1 . Hence, it suffices to estimate F in Ḃ
d
2
2,1, which may be done by

combining (70) and the following fact:

(74) the numerical product maps Ḃ
d
2
2,1(R

d)× Ḃ
d
2
2,1(R

d) to Ḃ
d
2
2,1(R

d).

Remembering (62), we get

(75) ‖F‖
Ḃ
d
2
2,1

. ‖Z‖
Ḃ
d
2
2,1

‖∇Z‖
Ḃ
d
2
2,1

.

Now, adding up the relation we get for r−1L̃r,ω(Ẑj) (after space integration) to (73) yields
for all j ≥ 0:

(76)
d

dt
Lj +

1

2

n−1∑
k=0

∫
Rd
εk|BAkωZj(ξ)|2 dξ .

(
2−j‖Fj‖L2 + cj2

−j( d
2
+1)‖Z‖2

Ḃ
d
2+1

2,1

)
‖Zj‖L2 ,

and (65) guarantees that

(77)

n−1∑
k=0

∫
Rd
εk|BAkωZj(ξ)|2 dξ & Lj .

Hence, using Lemma A.1, multiplying by 2j(
d
2
+1) and taking advantage of (63) and (75),

we end up with

(78) 2j(
d
2
+1)
√
Lj(t) + c2j(

d
2
+1)

∫ t

0

√
Lj dτ

≤ 2j(
d
2
+1)
√
Lj(0) + C

∫ t

0
cj‖Z‖

Ḃ
d
2+1

2,1

‖Z‖
Ḃ
d
2
2,1∩Ḃ

d
2+1

2,1

dτ.
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• Conclusion. Let us put

(79) L ,
∑
j<0

2j(
d
2
−1)√Lj +

∑
j≥0

2j(
d
2
+1)
√
Lj and H , ‖Z‖

Ḃ
d
2+1

2,1

.

Since Lj ' ‖Zj‖2L2 , we have the following equivalence:

(80) L ' ‖Z‖
B̃
d
2−1, d2+1

2,1

.

Note that this implies that

(81) ‖Z‖Ḃs2,1 . L for all
d

2
− 1 ≤ s ≤ d

2
+ 1.

Hence, we deduce from (71) and (78) that

(82) L(t) + c

∫ t

0
H(τ) dτ ≤ L(0) + C

∫ t

0
H(τ)L(τ) dτ.

We claim that there exists α > 0 such that if L(0) < α then, for all t ∈ [0, T ], we have

(83) L(t) +
c

2

∫ t

0
H(τ) dτ ≤ L(0).

Indeed, let us choose α ∈ (0, c/(2C)) so that L ≤ α implies that (62) is satisfied, and set

T0 , sup
{
T1 ∈ [0, T ], sup

t∈[0,T1]
L(t) ≤ α

}
·

The above set is nonempty (as 0 is in it) and contains its supremum since L is continuous
(remember that we assumed that Z is smooth). Hence we have

L(T0) + c

∫ T0

0
H(τ) dτ ≤ L(0) + C

∫ T0

0
H(τ)L(τ) dτ ≤ L(0) +

c

2

∫ T0

0
H(τ) dτ.

Using the smallness hypothesis on L(0), one may conclude that L < α on [0, T0]. As L is
continuous, we must have T0 = T and (83) thus holds on [0, T ].

Clearly, time t = 0 does not play any particular role, and one can apply the same
argument on any sub-interval of [0, T ], which leads to:

(84) L(t) +
c

2

∫ t

t0

H(τ) dτ ≤ L(t0), 0 ≤ t0 ≤ t ≤ T.

Hence, provided that ‖Z0‖
B̃
d
2−1, d2+1

2,1

, is small enough, L is a Lyapunov functional that is,

in light of (80), equivalent to ‖Z‖
B̃
d
2−1, d2+1

2,1

.

2.3. The damped mode. Define W by the relation:

∂tZ2 + L2W = 0.

Since L2 is invertible, the second line of (57) yields

(85) W = Z2 + L−12

d∑
k=1

(
Ak21(Z)∂kZ1 +Ak22(Z)∂kZ2

)
,
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which allows to get the following equation for W :

(86) ∂tW + L2W = L−12

( d∑
k=1

∂t(A
k
21(Z)∂kZ1) + ∂t(A

k
22(Z))∂kZ2 −Ak22(Z)L2∂kW

)
·

Applying ∆̇j to the above relation and denoting Wj , ∆̇jW leads to

∂tWj + L2Wj = L−12

( d∑
k=1

∆̇j∂t((A
k
21(Z)− Āk21)∂kZ1) + Āk21∂t∂kZ1,j

+∆̇j(∂t(A
k
22(Z)) ∂kZ2) + ∆̇j

(
(Āk22 −Ak22(Z))W

)
− Āk22L2∂kWj

)
·

Using (51), an energy method and Lemma A.1, we get two positive constants c and C such
that for all j ∈ Z and t ∈ [0, T ],

(87) ‖Wj(t)‖L2 + c

∫ t

0
‖Wj‖L2 ≤ ‖Wj(0)‖L2

+ C

∫ t

0

d∑
k=1

(
‖∆̇j∂t((A

k
21(Z)− Āk21)∂kZ1)‖L2 + ‖Āk21∂t∂kZ1,j‖L2

+ ‖∆̇j(∂t(A
k
22(Z) ∂kZ2)‖L2 + ‖∆̇j

(
(Āk22 −Ak22(Z))W

)
‖L2 + ‖L−12 Āk22L2∂kWj‖L2

)
dτ.

Bernstein inequality (150) guarantees that

‖L−12 Āk22L2∂kWj‖L2 ≤ C2j‖Wj‖L2 .

Hence, there exists j0 ∈ Z such that for all j ≤ j0, the last term may be absorbed by the
time integral of the left-hand side.

Next, using (57) to compute the time derivatives, we see that the terms with

∂t((A
k
21(Z)− Āk21)∂kZ1) or ∂t(A

k
22(Z)) ∂kZ2

are linear combinations of coefficients of type K(Z)Z⊗∇2Z, K(Z)Z⊗∇Z and K(Z)∇Z⊗
∇Z for suitable smooth functions K. Hence, using (69), (70) and remembering (62) yields

‖∂t((Ak21(Z)− Āk21)∂kZ1‖
Ḃ
d
2−1

2,1

+ ‖∂t(Ak22(Z)) ∂kZ2‖
Ḃ
d
2−1

2,1

≤ C
(
‖Z‖

Ḃ
d
2
2,1

‖∇Z‖
Ḃ
d
2
2,1

+ ‖Z‖2
Ḃ
d
2
2,1

)
·

To handle ‖∆̇j

(
(Āk22 − Ak22(Z))W

)
‖L2 , we split W into low and high frequencies. For the

low frequency part, we just write that by composition (70) and product law (69),

‖∆̇j

(
(Āk22 −Ak22(Z))W `

)
‖L2 ≤ Ccj2−j(

d
2
−1)‖Z‖

Ḃ
d
2
2,1

‖W‖`
Ḃ
d
2−1

2,1

.

For the high frequency part, we further decompose W as follows (in light of (85)):

(88) W = Z2 + L−12

d∑
k=1

(
Āk21∂kZ1 + Āk22∂kZ2

)
+ L−12

d∑
k=1

(
(Ak21(Z)− Āk21)∂kZ1 + (Ak22(Z)− Āk22)∂kZ2

)
,
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which allows to get

(89) ‖W‖h
Ḃ
d
2
2,1

≤ ‖Z2‖h
Ḃ
d
2
2,1

+ C‖∇Z‖h
Ḃ
d
2
2,1

+ C‖Z‖
Ḃ
d
2
2,1

‖∇Z‖
Ḃ
d
2
2,1

,

whence, using (74),

‖(Āk22 −Ak22(Z))W h‖
Ḃ
d
2
2,1

. ‖Z‖
Ḃ
d
2
2,1

‖W h‖
Ḃ
d
2
2,1

. ‖Z‖
Ḃ
d
2
2,1

(
‖Z2‖h

Ḃ
d
2
2,1

+ ‖∇Z‖h
Ḃ
d
2
2,1

+ ‖Z‖
Ḃ
d
2
2,1

‖∇Z‖
Ḃ
d
2
2,1

)
,

and thus

‖∆̇j

(
(Āk22 −Ak22(Z))W h

)
‖L2 . cj2

−j d
2 ‖Z‖

Ḃ
d
2
2,1

(
1 + ‖Z‖

Ḃ
d
2
2,1

)
‖∇Z‖

Ḃ
d
2
2,1

with
∑
j∈Z

cj = 1.

Plugging this information in (87), multiplying by 2j(
d
2
−1), summing up on j ≤ j0 and

remembering that ‖Z‖
Ḃ
d
2
2,1

is small, we conclude that6

‖W (t)‖`
Ḃ
d
2−1

2,1

+
c

2

∫ t

0
‖W‖`

Ḃ
d
2−1

2,1

dτ ≤ ‖W0‖`
Ḃ
d
2−1

2,1

+C

∫ t

0

(
‖Z‖

Ḃ
d
2
2,1

‖∇Z‖
Ḃ
d
2
2,1

+ ‖Z‖2
Ḃ
d
2
2,1

)
dτ + C

∫ t

0
‖Z‖`

Ḃ
d
2+1

2,1

dτ.

Since

‖Z‖
Ḃ
d
2
2,1

. ‖Z‖`
Ḃ
d
2−1

2,1

+ ‖Z‖h
Ḃ
d
2+1

2,1

and

‖Z‖2
Ḃ
d
2
2,1

. ‖Z‖
Ḃ
d
2−1

2,1

‖Z‖
Ḃ
d
2+1

2,1

,

taking advantage of (83) eventually yields :

(90) ‖W (t)‖`
Ḃ
d
2−1

2,1

+ c

∫ t

0
‖W‖`

Ḃ
d
2−1

2,1

dτ ≤ CL(0) for all t ∈ [0, T ].

Owing to (89) and (83), the high frequencies of W also satisfy

(91) ‖W (t)‖h
Ḃ
d
2−1

2,1

+ c

∫ t

0
‖W‖h

Ḃ
d
2−1

2,1

dτ ≤ CL(0) for all t ∈ [0, T ],

which completes the proof of (55).

2.4. Proving Theorem 2.1. Having the a priori estimates (83), (90) and (91) at hand,
constructing a global solution obeying Inequality (55) for any data Z0 satisfying (54) follows
from rather standard arguments. First, in order to benefit from the classical theory on first
order hyperbolic systems, we remove the low frequency part of Z0 so as to have an initial

data in the nonhomogeneous Besov space B
d
2
+1

2,1 . More precisely, we set for all n ∈ N,

(92) Zn0 , (Id − Ṡn)Z0 with Ṡn , χ(2−nD).

6Handling the intermediate frequencies corresponding to j0 ≤ j < 0 may be done from (71) since, then,

2j(
d
2
+1) ' 2j(

d
2
−1) and ‖Wj‖L2 . ‖Zj‖L2 .
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In light of e.g. [2, Chap. 4], we get a unique maximal solution Zn in

C([0, Tn);B
d
2
+1

2,1 ) ∩ C1([0, Tn);B
d
2
2,1).

Since B
d
2
2,1 is embedded in Ḃ

d
2
2,1, it is easy to prove from (57) and the composition and

product laws (69) and (70) that ∂tZ1 and (∂tZ2 − L2Z2) are in L∞loc(0, T
n; Ḃ

d
2
−1

2,1 ), and as

Zn0 belongs to Ḃ
d
2
−1

2,1 , we deduce that Zn is actually in C([0, Tn);B
d
2
+1

2,1 ∩ B
d
2
−1

2,1 ), hence

obeys (83) for all t ∈ [0, Tn). In particular, the embedding Ḃ
d
2
2,1 ↪→ L∞ guarantees that∫ Tn

0
‖∇Zn‖L∞ dt <∞,

and thus the standard continuation criterion for first order hyperbolic symmetric systems
(again, refer to e.g. [2, Chap. 4]) ensures that Tn =∞. In other words, for all n ∈ N, the
function Zn is a global solution of (57) that satisfies (83), (90) and (91) for all t ∈ R+.
Note that, owing to the definition (92), we have

‖Zn0 ‖
B̃
d
2 ,
d
2+1

2,1

≤ ‖Z0‖
B̃
d
2 ,
d
2+1

2,1

, n ∈ N.

Hence (Zn)n∈N is a sequence of global smooth solutions that is bounded in the space E of
Theorem 2.1.

Proving the convergence of (Zn)n∈N relies on the following proposition that can be easily
proved by writing out the system satisfied by the difference of two solutions Z and Z ′ of
(57), namely,

∂t(Z − Z ′) +

d∑
k=1

Ak(Z)· ∂k(Z − Z ′) +B(Z − Z ′) =

d∑
k=1

(Ak(Z ′)−Ak(Z))∂kZ
′,

applying the Littlewood-Paley truncation operator ∆̇j to this system then arguing as for
getting (73) and using product laws (see the details in [11, Prop. 2]):

Proposition 2.1. Consider two solutions Z and Z ′ of (57) in the space E corresponding

to small enough initial data Z0 and Z ′0 in B̃
d
2
−1, d

2
+1

2,1 . Then we have for all t ≥ 0,

‖(Z − Z ′)(t)‖
Ḃ
d
2
2,1

≤ ‖Z0 − Z ′0‖
Ḃ
d
2
2,1

+ C

∫ t

0

(
‖Z‖

B̃
d
2 ,
d
2+1

2,1

+ ‖Z ′‖
B̃
d
2 ,
d
2+1

2,1

)
dτ.

From this proposition (applied to Zn and Zm for any (n,m) ∈ N2 ), Gronwall lemma
and the definition of the initial data in (92), we gather that (Zn)n∈N is a Cauchy sequence

in the space Cb(R+; Ḃ
d
2
2,1), hence converges to some function Z in Cb(R+; Ḃ

d
2
2,1). As the

regularity is high, passing to the limit in the system is not an issue, and one can easily
conclude that Z satisfies (57) supplemented with data Z0.

That Z belongs to the smaller space E stems from standard functional analysis. Typ-
ically, one uses that all the Besov spaces under consideration satisfy the Fatou property,
that is, for instance

‖Z‖
B̃
d
2−1, d2+1

2,1

≤ C lim inf ‖Zn‖
B̃
d
2−1, d2+1

2,1

.

The only property that is missing is the time continuity with range in Ḃ
d
2
+1

2,1 . However, this

is known to be true for general quasilinear symmetric systems (see e.g. [2, Chap. 4]).
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Finally, the uniqueness follows from Proposition 2.1.

3. Decay estimates and asymptotic behavior

The global-in-time properties of integrability for the solution Z that have been proved
so far ensure that Z(t) tends to 0 in the tempered distributional meaning when t goes to
∞. In the present section, we aim at specifying the decay rate for some Besov norms of
Z, whenever the initial data satisfy a (mild) additional condition. In the pioneering works
by the Japanese school in the 70ies and early 80ies (see e.g. [28, 33]), it was expressed in
terms of Lebesgue spaces Lp for some p ∈ [1, 2). However, it is well understood now that
it suffices to prescribe this condition in some homogeneous Besov spaces with a negative
regularity index.

In order to understand how those spaces come into play, looking first at the linearized
at the linearized system (12) with no source term is very informative. Let Z be the
corresponding solution. Using (30) and Fourier-Plancherel theorem yields for all t ≥ 0:

(93) ‖Zj(t)‖L2 ≤ C‖Zj(0)‖L2e−cmin(1,22j)t, j ∈ Z.

This means that the high frequencies of Z decay to 0 exponentially fast, and that the low
frequencies behave as those of the heat flow. More precisely, for all α ≥ 0, we have

(22jt)α/2‖Zj(t)‖L2 ≤ C(22jt)α/2e−c2
2jt‖Zj(0)‖L2 , t ≥ 0, j < 0.

Hence, since the function xα/2e−x is bounded on R+, we eventually get for all s ∈ R,

(94) tα/2‖Z(t)‖`
Ḃs+α2,1

≤ Cα‖Z0‖`Ḃs2,1 , t ≥ 0.

We note that, as for the free heat equation, in order to obtain some decay for the low
frequencies, a shift a regularity is needed. This is the reason why it is wise to make an
additional assumption (e.g. some negative regularity) on the initial data to eventually get
some decay rate for the norms we considered before for the global solutions to (50). In fact,
to compare our results with the classical ones in the literature, one can introduce another
family of homogeneous Besov spaces, namely the sets Ḃs

2,∞ of tempered distributions z on

Rd satisfying

(95) ‖z‖Ḃs2,∞ , sup
j∈Z

2js‖∆̇jz‖L2 <∞ and lim
j→−∞

‖χ(2−jD)z‖L∞ = 0.

Owing to the critical embedding

‖z‖
Ḃ
d
2−

d
p

2,∞ (Rd)
. ‖z‖Lp(Rd), 1 ≤ p ≤ 2,

making assumptions in spaces Ḃs
2,∞ with a negative s is weaker than in the pioneering works

on decay estimates [28] where the initial data were assumed to be in L1 (this corresponds to
the endpoint value σ1 = d/2) or (see [33]) in Lp for some p ∈ [1, 2) (take σ1 = d/p− d/2).

This motivates the following statement that we shall prove in the rest of the section:

Theorem 3.1. Let the assumptions of Theorem 2.1 be in force, and assume in addition
that Z0 ∈ Ḃ−σ12,∞ for some σ1 in (1 − d/2, d/2]. Let α1 , (σ1 + d/2 − 1)/2 and c0 ,

(‖Z0‖Ḃ−σ12,∞
+ ‖Z0‖

B̃
d
2−1, d2+1

2,1

)−1/α1 .
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Then, the global solution Z constructed in Theorem 2.1 also belongs to L∞(R+; Ḃ−σ12,∞ ),
and there exists a constant C0 that may be computed in terms of c0 such that

(1 + c0t)
α1‖Z(t)‖`

Ḃ
d
2−1

2,1

+ (1 + c0t)
2α1
(
‖Z(t)‖h

Ḃ
d
2+1

2,1

+ ‖∂tZ2(t)‖`
Ḃ
d
2−1

2,1

)
≤ C0‖Z0‖

B̃
d
2−1, d2+1

2,1

.

Remark 3.1. Under the (stronger) structure assumptions of Theorem 2.2, one can prove
a similar result assuming only that σ1 is in wider range (−d/2, d/2]. The inequality we
eventually get is

(1 + c0t)
α1‖Z(t)‖`

Ḃ
d
2
2,1

+ (1 + c0t)
2α1‖Z(t)‖h

Ḃ
d
2+1

2,1

+ (1 + c0t)
2α1‖∂tZ2(t)‖`

Ḃ
d
2
2,1

≤ C0‖Z0‖
B̃
d
2 ,
d
2+1

2,1

with α1 , (σ1 + d/2)/2 and c0 , (‖Z0‖Ḃ−σ12,∞
+ ‖Z0‖

B̃
d
2 ,
d
2+1

2,1

)−1/α1 .

Remark 3.2. Even though the negative Besov space assumption is weaker than in e.g.
[33], the obtained decay rates are the same ones. Note also that ‖Z0‖Ḃ−σ12,∞

can be arbitrarily

large: only ‖Z0‖
B̃
d
2−1, d2+1

2,1

has to be small.

The linear decay rate for low frequencies turns out to be the correct one for the solu-
tion of the nonlinear system (50), and better (algebraic) decay rates hold true for the high
frequencies and for the damped mode. At the same time, although the high frequencies of
the solution of the linearized system (12) have exponential decay, it is not the case for the
nonlinear system (50) owing to the coupling between the low and high frequencies through
the nonlinear terms. We do not claim optimality of the above decay rates for the high fre-
quencies but, for sure, it is very unlikely that they are exponential even for very particular
initial data.

Let us briefly explain the general strategy of the proof. The starting point is to show
that the additional negative regularity is propagated for all time (with a time-independent
control). Then, we shall combine it with Inequality (84) and an interpolation argument
so as to exhibit a decay inequality for ‖Z(t)‖

Ḃ
d
2−1

2,1

. The rate that we shall get in this way

turns out to be precisely the one that was expected from our linear analysis in (94). Then,
interpolating with the estimate in the negative space will enable us to capture optimal decay
rates for intermediate norms ‖Z(t)‖Ḃs2,1 .

To the best of our knowledge the idea of combining a Lyapunov inequality with dissipation
and interpolation to get (optimal) decay rates originates from the work by J. Nash on
parabolic equations in [29]7. Implementing it on other equations in a functional framework
close to ours is rather recent. The overall strategy is well explained in a work by Y.
Guo and Y. Wang [19] devoted to the Boltzmann equation and the compressible Navier-
Stokes equations in the Sobolev spaces setting, and Z. Xin and J. Xu in [37] used the same
method to prove decay estimates for the compressible Navier-Stokes equations in the critical
regularity framework. In the context of partially dissipative systems, the idea of prescribing
additional integrability in terms of negative Besov norms instead of Lebesgue ones seems
to originate from a paper by J. Xu and S. Kawashima [40].

Finally, let us emphasize that it is possible to do without a Lyapunov functional (like we
did in e.g. [17]) but, somehow, the proof is more technical and less ‘elegant’.

7Special thanks to L.-M. Rodrigues for pointing out this reference to us.
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3.1. Propagation of negative regularity. In order to prove that the regularity in Ḃ−σ12,∞
is propagated for all time, let us start from the equation of Zj written in the following way:

∂tZj +
d∑

k=1

Ak(Z)∂kZj +BZj =
d∑

k=1

[Ak(Z), ∆̇j ]∂kZ.

Taking the L2 scalar product with Zj and using (51) yields

(96)
1

2

d

dt
‖Zj‖2L2 + c‖Z2,j‖2L2 ≤

d∑
k=1

‖[Ak, ∆̇j ]Z‖L2‖Zj‖L2 .

One can show (combine the commutator inequalities of [2, Chap. 2] with (70)) that

sup
j∈Z

2−jσ1‖[Ak(Z), ∆̇j ]∂kZ‖L2 ≤ C‖∇Z‖
Ḃ
d
2
2,1

‖Z‖
Ḃ
−σ1
2,∞

if − d

2
≤ −σ1 <

d

2
+ 1.

Hence, dropping the nonnegative term in the left-hand side of (96), using Lemma A.1 and
taking the supremum on j yields

‖Z(t)‖
Ḃ
−σ1
2,∞
≤ ‖Z0‖Ḃ−σ12,∞

+ C

∫ t

0
‖∇Z‖

Ḃ
d
2
2,1

‖Z‖
Ḃ
−σ1
2,∞

dτ, t ≥ 0,

which, after applying Gronwall lemma, leads to

‖Z(t)‖
Ḃ
−σ1
2,∞
≤ ‖Z0‖Ḃ−σ12,∞

exp
(
C

∫ t

0
‖∇Z‖

Ḃ
d
2
2,1

dτ
)
·

Whenever Z0 satisfies (54), the global solution of Theorem 2.1 has (small) gradient in

L1(R+; Ḃ
d
2
2,1). Hence the above inequality guarantees that Z is uniformly bounded in Ḃ−σ12,∞ :

there exists a constant C depending only on σ1 and such that

(97) sup
t≥0
‖Z(t)‖

Ḃ
−σ1
2,∞
≤ C‖Z0‖Ḃ−σ12,∞

.

3.2. Decay estimates for the whole solution. The starting point is Inequality (84)
that is valid for all 0 ≤ t0 ≤ t, and the fact that

L '
∑
j∈Z

2j(
d
2
−1)+max(1,22j)‖Zj‖L2 and H = ‖Z‖

Ḃ
d
2+1

2,1

.

Being monotonous, the function L is almost everywhere differentiable on R+ and Inequality
(84) thus implies that

(98)
d

dt
L+ cH ≤ 0 a.e. on R+.

Now, if −σ1 < d/2− 1, then one may use the following interpolation inequality:

‖Z‖`
Ḃ
d
2−1

2,1

.
(
‖Z‖`

Ḃ
d
2+1

2,1

)1−θ0(‖Z‖`
Ḃ
−σ1
2,∞

)θ0 with (1− θ0)
(

1 +
d

2

)
− σ1θ0 =

d

2
− 1

which implies, taking advantage of (97), that

(99) ‖Z(t)‖`
Ḃ
d
2+1

2,1

&
(
‖Z(t)‖`

Ḃ
d
2−1

2,1

) 1
1−θ0 ‖Z0‖

− θ0
1−θ0

Ḃ
−σ1
2,∞

.
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To handle the high frequencies of Z, we just write that, owing to (55), we have

(100) ‖Z(t)‖h
Ḃ
d
2+1

2,1

&
(
‖Z(t)‖h

Ḃ
d
2+1

2,1

) 1
1−θ0 ‖Z0‖

− θ0
1−θ0

B̃
d
2−1, d2+1

2,1

.

Putting (99) and (100) together and remembering that

(101) L ' ‖Z‖`
Ḃ
d
2−1

2,1

+ ‖Z‖h
Ḃ
d
2+1

2,1

,

one may thus write that for a small enough c > 0, we have

H & c0L
1

1−θ0 with c0 , c
(
‖Z0‖Ḃ−σ12,∞

+ ‖Z0‖
B̃
d
2−1, d2+1

2,1

)− θ0
1−θ0 ·

Reverting to (98), one eventually obtains the following differential inequality:

d

dt
L+ c0L

1
1−θ0 ≤ 0,

which readily leads to

(102) L(t) ≤ (1 + c0t)
1−1/θ0L(0).

Now, replacing θ0 with its value, and using (101), one can conclude that

(103) ‖Z(t)‖
B̃
d
2−1, d2+1

2,1

. (1 + c0t)
−α1‖Z0‖

B̃
d
2−1, d2+1

2,1

with α1 ,
1

2

(
σ1 +

d

2
− 1

)
·

As regards the low frequencies of the solution, this decay is consistent with (94) in the case
s = −σ1 and α = σ1 + d/2− 1.

3.3. High frequency decay. From (76) and (77), we gather

1

2

d

dt
Lj + cLj . 2−j‖Fj‖L2‖Zj‖L2 + cj2

−j( d
2
+1)‖Z‖2

Ḃ
d
2+1

2,1

√
Lj with

∑
j≥0

cj = 1.

Hence, bounding Fj according to (75) yields

1

2

d

dt
Lj + cLj . cj2−j(

d
2
+1)‖Z‖

Ḃ
d
2+1

2,1

(
‖Z‖

Ḃ
d
2
2,1

+ ‖Z‖
Ḃ
d
2+1

2,1

)√
Lj with

∑
j≥0

cj = 1,

whence
1

2

d

dt
(ect
√
Lj)2 . cj2−j(

d
2
+1)‖Z‖

Ḃ
d
2+1

2,1

‖Z‖
B̃
d
2 ,
d
2+1

2,1

(ect
√
Lj).

By time integration (viz. we use Lemma A.1), we deduce that√
Lj(t) ≤ e−ct

√
Lj(0) + C2−j(

d
2
+1)

∫ t

0
e−c(t−τ)cj(τ)‖Z(τ)‖

Ḃ
d
2+1

2,1

‖Z(τ)‖
B̃
d
2 ,
d
2+1

2,1

dτ.

Hence, multiplying both sides by 2j(
d
2
+1), then summing up on j ≥ 0 and using the equiv-

alence of the high frequency part of (79) with the norm in Ḃ
d
2
+1

2,1 , we end up with

‖Z(t)‖h
Ḃ
d
2+1

2,1

. e−ct‖Z0‖h
Ḃ
d
2+1

2,1

+

∫ t

0
e−c(t−τ)‖Z(τ)‖

Ḃ
d
2+1

2,1

‖Z(τ)‖
B̃
d
2 ,
d
2+1

2,1

dτ.
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Consequently, for all t ≥ 0,

(1 + c0t)
2α1‖Z(t)‖h

Ḃ
d
2+1

2,1

. (1 + c0t)
2α1e−ct‖Z0‖h

Ḃ
d
2+1

2,1

+

∫ t

0

(
1 + c0t

1 + c0τ

)2α1

e−c(t−τ)
(
(1 + c0τ)α1‖Z(τ)‖

B̃
d
2 ,
d
2+1

2,1

)2
dτ.

Inequality (102) ensures that

sup
τ≥0

(1 + c0τ)α1‖Z(τ)‖
B̃
d
2 ,
d
2+1

2,1

≤ C‖Z0‖
B̃
d
2−1, d2+1

2,1

.

Furthermore, one can find a constant C0 depending only on α1 and c0 such that∫ t

0

(
1 + c0t

1 + c0τ

)2α1

e−c(t−τ) dτ ≤ C0, t ≥ 0.

Hence, in the end, we get

(104) sup
t≥0

(1 + c0t)
2α1‖Z(t)‖h

Ḃ
d
2+1

2,1

≤ C0‖Z0‖
B̃
d
2−1, d2+1

2,1

.

3.4. The decay of the damped mode. According to (86) and to (57), the damped mode

W , −L−12 ∂tZ2 satisfies a relation of the form

∂tW + L2W ' Z · ∇2Z +∇Z · ∇Z + (1 + Z)∇W

and, according to (85), we have

W ' Z2 +∇Z + Z∇Z.

Therefore, applying ∆̇j to the above equation, taking the L2 scalar product with Wj ,
∆̇jW and using Bernstein inequality in order to bound the last term, we get for all j ∈ Z,
1

2

d

dt
‖Wj‖2L2 + c‖Wj‖2L2 ≤ C

(
‖∆̇j((1 + Z)Z · ∇2Z)‖L2 + ‖∆̇j((1 + Z)∇Z · ∇Z)‖L2

+‖∆̇j(∇Z2 · Z)‖L2

)
‖Wj‖L2 + C2j‖Wj‖2L2 .

Let us choose j0 ∈ Z such that C2j0 ≤ c/2 (so that the last term may be absorbed by the

left-hand side). Then, using Lemma A.1, multiplying both sides by 2j(
d
2
−1), then summing

up on j ≤ j0, we end up with8

(105) ‖W (t)‖`
Ḃ
d
2−1

2,1

≤ e−ct‖W0‖`
Ḃ
d
2−1

2,1

+C

∫ t

0
e−c(t−τ)

(
‖(1 +Z)Z⊗∇2Z‖`

Ḃ
d
2−1

2,1

+‖(1 +Z)∇Z⊗∇Z‖`
Ḃ
d
2−1

2,1

+‖Z⊗∇Z2‖`
Ḃ
d
2−1

2,1

)
dτ.

Since d ≥ 2, the product laws (69) and (74) guarantee that

‖(1 + Z)Z ⊗∇2Z‖
Ḃ
d
2−1

2,1

+ ‖(1 + Z)∇Z ⊗∇Z‖
Ḃ
d
2−1

2,1

.
(
1 + ‖Z‖

Ḃ
d
2
2,1

)
‖Z‖

Ḃ
d
2
2,1

‖Z‖
Ḃ
d
2+1

2,1

,

8Rigorously speaking the low frequencies that are here considered are lower than with our previous
definition since it may happen that j0 ≤ 0. However, one may check that the high frequency decay estimate
in (104) still holds if we put the threshold at some j0 ≤ 0: the argument we used works if summing up on
j ≥ j0 provided we change the ‘constants’ accordingly.
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which, combined with (103) and the fact that ‖Z‖
Ḃ
d
2
2,1

is small implies that

‖(1 + Z)Z ⊗∇2Z‖
Ḃ
d
2−1

2,1

+ ‖(1 + Z)∇Z ⊗∇Z‖
Ḃ
d
2−1

2,1

. (1 + c0t)
−2α1L2(0).

Similarly, we have

‖(1 + Z)Z ⊗∇Z2‖
Ḃ
d
2−1

2,1

. ‖Z‖2
Ḃ
d
2
2,1

. ‖Z‖2
B̃
d
2−1, d2+1

2,1

. (1 + c0t)
−2α1L2(0).

Hence, using (105) and arguing as in the previous paragraph, we end up with

(106) sup
t≥0

(1 + c0t)
2α1‖W (t)‖`

Ḃ
d
2−1

2,1

≤ C0‖Z0‖
B̃
d
2−1, d2+1

2,1

.

In other words, the decay rate for the low frequencies of the damped mode in norm Ḃ
d
2
−1

2,1

is the same as that of the high frequencies of the whole solution.

Summing up the results of the previous paragraphs completes the proof of Theorem 3.1.

4. On the strong relaxation limit

This section is devoted to the study of a singular limit problem for the following class of
partially dissipative hyperbolic systems:

(107) ∂tZ
ε +

d∑
k=1

Ak(Zε)∂kZ
ε +

BZε

ε
= 0,

where, denoting Āk`m , Ak`m(0) and Ãk`m(Z) , Ak`m(Z) − Āk`m, we assume that for all
k ∈ {1, · · · , d} :

(1) Āk11 = 0, and Ãk11 is linear with respect to Z2 and independent of Z1 ,

(2) Ãk12 and Ãk21 are linear with respect to Z1 and independent of Z2 ,

(3) Ãk22 is linear with respect to Z,
(4) Condition (SK) is satisfied by the pair (A(ξ), B) with A(ξ) defined in (13), at every

point ξ ∈ Rd.
The linearity assumption is here just for simplicity as well as the fact that there is no

0-order nonlinear term. At the same time, assuming that Ak12 and Ak21 (resp. Ak11 ) only
depend on Z1 (resp. Z2 ) is very helpful, if not essential. We shall see that it is satisfied by
the compressible Euler equations written in terms of the sound speed (see (5)).

We want to study the so-called ‘strong relaxation limit’, that is whether the global
solutions of (107) constructed before tend to satisfy some limit system when ε goes to 0.

A hasty analysis suggests that the part of the solution that experiences direct dissipation,
namely Zε2 with the notation of the previous sections, tends to 0 with a characteristic
time of order ε and that, consequently, Zε1 tends to be time independent (since, for all
k ∈ {1, · · · , d}, we have Āk11 = 0 and Ak11 is independent of Z1 ). To some extent this will
prove to be true but, even for the simple case of the linearized one-dimensional compressible
Euler equations, the situation is more complex than expected. Indeed, consider

(108)

{
∂ta+ ∂xu = 0,

∂tu+ ∂xa+ ε−1u = 0.
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In the Fourier space, this system translates into

d

dt

(
â
û

)
+

(
0 iξ
iξ ε−1

)(
â
û

)
=

(
0
0

)
·

• In low frequencies |ξ| < (2ε)−1, the matrix A(ξ) of this system has the following
two real eigenvalues:

λ±(ξ) =
1

2ε

(
1±

√
1− (2εξ)2

)
·

For ξ going to 0, we observe that

λ+(ξ) ∼ ε−1 and λ−(ξ) ∼ εξ2.

This means that one of the modes of the system is indeed damped with coeffi-
cient ε−1 but that the overall behavior of solutions of the system is like for the
inviscid limit (or for the heat equation with vanishing diffusion).
• In high frequencies |ξ| > (2ε)−1, the matrix A(ξ) has the following two complex

conjugated eigenvalues:

λ±(ξ) =
1

2ε

(
1± i

√
(2εξ)2 − 1

)
·

Clearly, Reλ±(ξ) = (2ε)−1 and Imλ±(ξ) ∼ iξ for ξ →∞. Hence, there is indeed
dissipation with characteristic time ε for the high frequencies of the solution.

The ‘low frequency regime’ is expected to dominate when ε → 0, as it corresponds to
|ξ| . ε−1. Consequently, the overall behavior of System (108) might be similar to that of
the heat flow with diffusion ε, and one can wonder if the high relaxation limit is analogous
to the inviscid limit9. However, we have to keep in mind that the low frequencies of the
‘damped mode’ (that here corresponds to the combination u + ε∂xa) undergo a much
stronger dissipation. This is of course an element that one has to take into consideration.

Based on this simple example, it looks that in order to investigate the high relaxation
limit, it is suitable to use a functional framework that non only reflects the different be-
havior of the low and high frequencies (with threshold being located around ε−1 ) but also
emphasizes the better properties of the damped mode.

4.1. A ‘cheap’ result of convergence. Let us revert to the general class of Systems
(107) supplemented with initial data Zε0 . The structure assumptions that we made at the
beginning of the section enable us to apply Theorem 2.2. In this Subsection, we shall
take advantage of it and of elementary scaling considerations so as to establish that both
Zε1 − Zε1,0 and Zε2 converge strongly to 0 for suitable norms. The reader may refer to the
next subsection for a more accurate result.

The starting observation is the following change of time and space scale:

(109) Z̃(t, x) , Zε(εt, εx).

Clearly, Zε satisfies (107) if and only if Z̃ satisfies (57).

9This phenomenon that is well known in physics is sometimes called overdamping.
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The following property of homogeneous Besov norms is well known (see [2, Chap. 2]):

(110) ‖z(ε·)‖Ḃs2,1 ' ε
s−d/2‖z‖Ḃs2,1 .

By adapting the proof therein, one can prove that

(111) ‖z(ε·)‖`
Ḃs2,1
' εs−d/2‖z‖`,ε

−1

Ḃs2,1
and ‖z(ε·)‖h

Ḃs2,1
' εs−d/2‖z‖h,ε

−1

Ḃs2,1

where we have used the notation

(112) ‖z‖`,α
Ḃs2,1
,

∑
j∈Z, 2j<α

2js‖∆̇jz‖L2 and ‖z‖h,α
Ḃs2,1
,

∑
j∈Z, 2j≥α

2js‖∆̇jz‖L2 .

Putting together (110), (111), the change of unknowns (109) and Theorem 2.2 readily gives
the following global existence result that is valid for all ε > 0.

Theorem 4.1. There exists a positive constant α such that for all ε > 0 and data Zε0
satisfying

(113) Zε0 , ‖Zε0‖
`,ε−1

Ḃ
d
2
2,1

+ ε‖Zε0‖
h,ε−1

Ḃ
d
2+1

2,1

≤ α,

System (107) supplemented with initial data Zε0 admits a unique global-in-time solution Zε

satisfying the inequality

(114) Zε(t) ≤ CZε0 with

Zε(t) , ‖Zε‖`,ε
−1

L∞t (Ḃ
d
2
2,1)

+ε‖Zε‖h,ε
−1

L∞t (Ḃ
d
2+1

2,1 )

+ε‖Zε1‖
`,ε−1

L1
t (Ḃ

d
2+2

2,1 )

+‖Zε2‖
`,ε−1

L1
t (Ḃ

d
2+1

2,1 )

+ε−1/2‖Zε2‖
`,ε−1

L2
t (Ḃ

d
2
2,1)

+‖Zε‖h
L1
t (Ḃ

d
2+1

2,1 )
+ ‖∂tZε2‖`

L1
t (Ḃ

d
2
2,1)
.

The above theorem implies that Zε1 → Zε1(0) and that Zε2 → 0 when ε → 0. Indeed,
from the definition (112), it is obvious that for all η > 0, β ≥ 0 and s ∈ R, we have

(115) ‖z‖`,η
Ḃs+β2,1

. ηβ‖z‖`,η
Ḃs2,1

and ‖z‖h,η
Ḃs−β2,1

. η−β‖z‖h,η
Ḃs2,1

.

Hence, using (114) and Hölder inequality yields

(116) ‖Zε‖h,ε
−1

L2(R+;Ḃ
d
2
2,1)

≤ Cε1/2Zε0 .

Thanks to (113) and, again, to (114), this allows to get

(117) ‖Zε2‖
L2(R+;Ḃ

d
2
2,1)
≤ Cαε1/2.

In order to justify that Zε1 → Zε1(0), one may bound ∂tZ
ε
1 through (107) remembering that

the blocks Ak11 are linear with respect to Zε2 . From the product law (69), and from (114)
and (117), we get

‖∂tZε1‖
L2(R+;Ḃ

d
2−1

2,1 )
. ‖Zε2‖

L2(R+;Ḃ
d
2
2,1)
‖Zε‖

L∞(R+;Ḃ
d
2
2,1)
≤ Cα2ε1/2,

and thus

(118) ‖Zε1(t)− Zε1,0‖
Ḃ
d
2−1

2,1

≤ Cα2(εt)1/2 for all t ≥ 0.
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In conclusion, Zε2 tends to 0 in L2(R+; Ḃ
d
2
2,1) with rate of convergence ε1/2, and Zε1 −Zε1,0

converges to 0 in L∞([0, T ]; Ḃ
d
2
−1

2,1 ) with rate (εT )1/2, for all T > 0.

4.2. Connections with porous media-like equations. In order to exhibit richer dy-
namics in the asymptotics ε→ 0, one may perform the following ‘diffusive’ rescaling:

(119) (Z̃ε1 , Z̃
ε
2)(τ, x) = (Zε1 , ε

−1Zε2)(ε−1τ, x).

Dropping the exponents ε for better readability, we get the following system for (Z̃1, Z̃2):

(120)


∂τ Z̃1 +

d∑
k=1

Ãk11(Z̃2)∂kZ̃1 +
d∑

k=1

(
Āk12+Ãk12(Z̃1)

)
∂kZ̃2 = 0,

ε2∂τ Z̃2 + ε
d∑

k=1

(
Āk22+Ãk22(Z̃1, εZ̃2)

)
∂kZ̃2 +

d∑
k=1

(
Āk21+Ãk21(Z̃1)

)
∂kZ̃1 + L2Z̃2 = 0.

From the second line, one can expect

(121) W̃ , Z̃2 + L−12

( d∑
k=1

(
Āk21 + Ãk21(Z̃1)

)
∂kZ̃1

)
−→ 0.

In order to find out what could be the limit system for Z̃1, let us systematically express Z̃2

in terms of W̃ and Z̃1 by means of (121) in the first line of (120). We get

∂τ Z̃1 +
∑
k

(
Āk12+Ãk12(Z̃1)

)
∂kW̃ + Ãk11(W̃ )∂kZ̃1

+
∑
k,`

(
Āk12+Ãk12(Z̃1)

)
L−12 ∂k

((
Ā`21+Ã`21(Z̃1)

)
∂`Z̃1

)
+
∑
k,`

Ãk11
(
L−12

(
Ā`21+Ã`21(Z̃1)

)
∂`Z̃1

)
∂kZ̃1 = 0.

Introducing the following second order operator:

(122) A ,
∑
k,`

Āk12L
−1
2 Ā`2,1∂k∂`,

the above equation may be rewritten:

(123) ∂τ Z̃1 +AZ̃1 +Q1(Z̃1,∇2Z̃1) +Q2(∇Z̃1,∇Z̃1)

+ T1(Z̃1,∇Z̃1,∇Z̃1) + T2(Z̃1, Z̃1,∇2Z̃1) = S

where, Q1, Q2 (resp. T1, T2 ) are bilinear (resp. trilinear) expressions that may be com-

puted in terms of the coefficients of the matrices Ãk11, Ã
k
12 and of L2, and

(124) S , −
d∑

k=1

(
Āk12 + Ãk12(Z̃1)

)
∂kW̃ −

d∑
k=1

Ãk11(W̃ )∂kZ̃1.

Consequently, if (121) is true, then we expect Z̃1 to tend to Ñ with Ñ satisfying

(125) ∂τ Ñ +AÑ +Q1(Ñ ,∇2Ñ)+Q2(∇Ñ ,∇Ñ)+T1(Ñ ,∇Ñ ,∇Ñ)+T2(Ñ , Ñ ,∇2Ñ) = 0.
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Note that, as a consequence of Lemma A.3 in Appendix, and since we assumed both Condi-
tion (SK) and that Āk11 = 0 for all k ∈ {1, · · · , d}, (125) is a quasilinear (scalar) parabolic
equation.

Before justifying the above heuristics in the general case, let us again consider the com-
pressible Euler equations, that is

(126)

{
∂t%

ε + div(%εvε) = 0 in R+ × Rd,

∂t(%
εvε) + div(%εvε ⊗ vε) +∇(P (%ε)) + ε−1%εvε = 0 in R+ × Rd.

Under the isentropic assumption

(127) P (z) = Azγ with γ > 1 and A > 0,

the above system enters in the class (107) if reformulated in terms of (cε, %ε), where

(128) cε ,
(γA)

1
2

γ̃
(%ε)γ̃ and γ̃ ,

γ − 1

2
·

Indeed, we get:

(129)

{
∂tc

ε + vε · ∇cε + γ̃cεdivvε = 0,

∂tv
ε + vε · ∇vε + γ̃cε∇cε + ε−1vε = 0.

So, if we set c̄ , (γA)
1
2

γ̃ (%̄)γ̃ , then Conditions (1) to (4) below (107) are satisfied with

Zε1 = cε − c̄ and Zε2 = vε.

Now, performing the diffusive rescaling:

(130) (%ε, vε)(t, x) = (%̃ε, εṽε)(εt, x),

System (126) becomes

(131)

{
∂τ %̃

ε + div(%̃εṽε) = 0 in R+ × Rd,

ε2∂τ (%̃εṽε) + εdiv(%̃εṽε ⊗ ṽε) +∇(P (%̃ε)) + %̃εṽε = 0 in R+ × Rd.

In light of the second equation, it is expected that

∇(P (%̃ε)) + %̃εṽε → 0 when ε→ 0,

and thus that %̃ε converges to some solution Ñ of the porous media equation:

(132) ∂τ Ñ −∆(P (Ñ)) = 0.

The general result we shall prove for Systems (107) reads as follows for the particular case
of the isentropic Euler equations10:

Theorem 4.2. Consider the Euler equations with relaxation (126) in Rd (with d ≥ 1)

with pressure law (127) and initial data (%ε0, v
ε
0) such that (%ε − %̄) ∈ Ḃ

d
2
2,1 ∩ Ḃ

d
2
+1

2,1 and

vε0 ∈ Ḃ
d
2
2,1 ∩ Ḃ

d
2
+1

2,1 . There exists α > 0 independent of ε such that if

(133) ‖(%ε0 − %̄, vε0)‖`,ε
−1

Ḃ
d
2
2,1

+ ε‖(%ε0 − %̄, vε0)‖h,ε
−1

Ḃ
d
2+1

2,1

≤ α

10A statement in the same spirit, but allowing for Besov spaces constructed on Lp may be found in [12].
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then (126) supplemented with (%ε0, v
ε
0) has a unique solution (%ε, vε) with (%ε − %̄, vε) ∈

Cb(R+; Ḃ
d
2
2,1 ∩ Ḃ

d
2
+1

2,1 ) satisfying in addition

(134) ‖(%ε − %̄, vε)‖`,ε
−1

L∞(R+;Ḃ
d
2
2,1)

+ ε‖(%ε − %̄, vε)‖h,ε
−1

L∞(R+;Ḃ
d
2+1

2,1 )

+ ε1/2‖%ε − %̄‖
L2(R+;Ḃ

d
2+1

2,1 )

+ ‖vε‖
L1(R+;Ḃ

d
2+1

2,1 )
+ ε−1/2‖vε‖`,ε

−1

L2(R+;Ḃ
d
2
2,1)

+ ‖ε−1vε + (%ε)−1∇(P (%ε))‖`,ε
−1

L1(R+;Ḃ
d
2
2,1)

≤ Cα.

Furthermore, for any Ñ0 in Ḃ
d
2
2,1 such that ‖Ñ0‖

Ḃ
d
2
2,1

≤ α, Equation (132) has a unique

solution Ñ in the space Cb(R+; Ḃ
d
2
2,1) ∩ L1(R+; Ḃ

d
2
+2

2,1 ) satisfying for all t ≥ 0,

‖Ñ(t)‖
Ḃ
d
2
2,1

+

∫ t

0
‖Ñ‖

Ḃ
d
2+2

2,1

dτ ≤ C‖Ñ0‖
Ḃ
d
2
2,1

.

Finally, if one denotes by (%̃ε, ṽε) the rescaled solution of the Euler equations defined through
(130) and assumes in addition that

‖Ñ0 − %̃0‖
Ḃ
d
2−1

2,1

≤ Cε,

then we have

(135)

∥∥∥∥ṽε +
∇(P (%̃ε))

%̃ε

∥∥∥∥
L1(R+;Ḃ

d
2
2,1)

+ ‖Ñ − %̃ε‖
L∞(R+;Ḃ

d
2−1

2,1 )
+ ‖Ñ − %̃ε‖

L1(R+;Ḃ
d
2+1

2,1 )
≤ Cε.

Proof. Let us assume for a while that ε = 1 so that one can readily take advantage of
Theorem 2.3. As a first, we want to translate Theorem 2.3 in terms of %, where c and %
(resp. c̄ and %̄) are interrelated through (128).

On the one hand, Inequality (61), the property of interpolation in Besov spaces and
Hölder inequality with respect to the time variable imply that

‖c− c̄‖
L2(R+;Ḃ

d
2+1

2,1 )
≤ C‖(c0 − c̄, v0)‖

B̃
d
2 ,
d
2+1

2,1

.

On the other hand, using the fact that the composition inequality (70) is actually valid for
all positive Besov exponents (see e.g. [2][Chap. 2]), we may write that

‖c− c̄‖
Ḃ
d
2+α

2,1

≈ ‖%− %̄‖
Ḃ
d
2+α

2,1

for α = 0, 1.

Finally, we note that ∂tv = −v − %−1∇(P (%))− v · ∇v and that

‖v · ∇v‖
L1(R+;Ḃ

d
2
2,1)
≤ C‖v‖

L∞(R+;Ḃ
d
2
2,1)
‖∇v‖

L1(R+;Ḃ
d
2
2,1)
.

Therefore, the last term of ∂tv may be ‘omitted’ in Inequality (61), and we get

(136) ‖(%− %̄, v)‖
L∞(R+;B̃

d
2 ,
d
2+1

2,1 )
+ ‖%− %̄‖`

L2(R+;Ḃ
d
2+1

2,1 )
+ ‖v‖

L1(R+;Ḃ
d
2+1

2,1 )
+ ‖v‖`

L2(R+;Ḃ
d
2
2,1)

+ ‖v + %−1∇(P (%))‖
L1(R+;Ḃ

d
2
2,1)
≤ C‖(%0 − %̄, v0)‖

B̃
d
2 ,
d
2+1

2,1

.

Now, for general ε > 0, performing the rescaling (109) and remembering the equivalences
(110) and (111) gives the first part of Theorem 4.2.
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After performing the diffusive rescaling (130), the rescaled pair (%̃ε, ṽε) satisfies

∂t%̃
ε −∆(P (%̃ε)) = −div(%̃εW̃ ε) with W̃ ε , ṽε +

∇(P (%̃ε))

%̃ε
·

Thanks to (110), the bound for the last term in (136) translates into

(137) ‖W̃ ε‖
L1(R+;Ḃ

d
2
2,1)
≤ Cαε,

which completes the proof of (134).

Proving that %̃ε tends to some solution Ñ of (132) may be done exactly as in the general
case presented below in Theorem 4.3. �

Let us finally turn to the study of the strong relaxation limit in the general case. The
main result we shall get reads as follows:

Theorem 4.3. Assume that11 d ≥ 2 and consider a system of type (120) for some ε > 0.
Let the structure hypotheses listed below (107) be in force. There exists a positive constant α

(independent of ε) such that for any initial data Ñ0 ∈ Ḃ
d
2
2,1 for (125) and Z̃ε0 ∈ Ḃ

d
2
2,1∩Ḃ

d
2
+1

2,1

for (120) satisfying

‖Ñ0‖
Ḃ
d
2
2,1

≤ α,(138)

Zε0 , ‖Z̃ε0,1‖
`,ε−1

Ḃ
d
2
2,1

+ ε‖Z̃ε0,2‖
`,ε−1

Ḃ
d
2
2,1

+ ε‖Z̃ε0,1‖
h,ε−1

Ḃ
d
2+1

2,1

+ ε2‖Z̃ε0,2‖
h,ε−1

Ḃ
d
2+1

2,1

≤ α,(139)

System (125) admits a unique solution Ñ in the space

Cb(R+; Ḃ
d
2
2,1) ∩ L

1(R+; Ḃ
d
2
+2

2,1 ),

satisfying for all t ≥ 0,

(140) ‖Ñ(t)‖
Ḃ
d
2
2,1

+

∫ t

0
‖Ñ‖

Ḃ
d
2+2

2,1

dτ ≤ C‖Ñ0‖
Ḃ
d
2
2,1

,

and System (120) has a unique global-in-time solution Z̃ε in C(R+; Ḃ
d
2
2,1 ∩ Ḃ

d
2
+1

2,1 ) such that

(141) ‖Z̃ε1‖
`,ε−1

L∞(R+;Ḃ
d
2
2,1)

+ ε‖Z̃ε2‖
`,ε−1

L∞(R+;Ḃ
d
2
2,1)

+ ε‖Z̃ε1‖
h,ε−1

L∞(R+;Ḃ
d
2+1

2,1 )

+ ε2‖Z̃ε2‖
h,ε−1

L∞(R+;Ḃ
d
2+1

2,1 )

+ ‖Z̃ε1‖
`,ε−1

L1(R+;Ḃ
d
2+2

2,1 )

+ ε−1‖Z̃ε1‖
h,ε−1

L1(R+;Ḃ
d
2+1

2,1 )

+ ‖Z̃ε2‖
L1(R+;Ḃ

d
2+1

2,1 )

+ ‖Z̃ε2‖
`,ε−1

L2(R+;Ḃ
d
2
2,1)

+ ε−1‖W̃ ε‖
L1(R+;Ḃ

d
2
2,1)
≤ CZε0 ,

where W̃ ε has been defined in (121).

11The one-dimensional case is tractable either under specific assumptions on the nonlinearities that are
satisfied by the Euler equations, or in a slightly different functional framework. More details may be found
in [12].
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If, in addition,

‖Ñ0 − Z̃ε1,0‖
Ḃ
d
2−1

2,1

≤ Cε,

then we have

(142) ‖Ñ − Z̃ε1‖
L∞(R+;Ḃ

d
2−1

2,1 )
+ ‖Ñ − Z̃ε1‖

L1(R+;Ḃ
d
2+1

2,1 )
≤ Cε.

Proof. That (120) supplemented with initial data Z̃0 admits a unique global solution satis-
fying (141) follows from Theorem 2.2 after suitable rescaling. Indeed, if we make the change
of unknowns:

(143) (Z̃1, Z̃2)(τ, x) = (Ž1,
Ž2

ε
)
( τ
ε2
,
x

ε

)
,

then we discover that Z̃ satisfies (120) if and only if Ž is a solution to (57). Then, taking
advantage of the equivalence of norms pointed out in (110) and (111) gives the desired
global existence result and (141) up to the last term since defining the damped mode as in
(85) would lead to the function

(144) Z̃2 + L−12

d∑
k=1

(Āk21 + Ãk21(Z̃1))∂kZ̃1 + εL−12

d∑
k=1

(
Āk22 + Ãk22(Z̃1, εZ̃2)

)
∂kZ̃2.

However, combining Inequality (141) (without the last term of course) with (115) ensures
that

‖Z̃1‖
L∞(R+;Ḃ

d
2
2,1)

+ ε‖Z̃2‖
L∞(R+;Ḃ

d
2
2,1)

+ ‖∇Z̃2‖
L1(R+;Ḃ

d
2
2,1)
. Zε0 .

Hence the last term of (144) is of order ε in L1(R+; Ḃ
d
2
2,1), and W̃ does satisfy (141).

In order to prove the convergence of Z̃1 to Ñ , let us first verify that S defined in (124)

is of order ε in L1(R+; Ḃ
d
2
−1

2,1 ). As d ≥ 2, it is just a matter of taking advantage of the

product law (69) to get

‖S‖
Ḃ
d
2−1

2,1

.
(
1 + ‖Z̃1‖

Ḃ
d
2
2,1

)
‖∇W̃‖

Ḃ
d
2−1

2,1

+ ‖W̃‖
Ḃ
d
2
2,1

‖∇Z̃1‖
Ḃ
d
2−1

2,1

.

Hence,

‖S‖
L1(R+;Ḃ

d
2−1

2,1 )
.
(
1 + ‖Z̃1‖

L∞(R+;Ḃ
d
2
2,1)

)
‖W̃‖

L1(R+;Ḃ
d
2
2,1)

and using (141) and the smallness of the initial data thus yields

(145) ‖S‖
L1(R+;Ḃ

d
2−1

2,1 )
≤ Cεα.

Let us next briefly justify that any data Ñ0 satisfying (138) gives rise to a unique global

solution Ñ of (125) in Cb(R+; Ḃ
d
2
2,1) ∩ L1(R+; Ḃ

d
2
+2

2,1 ) satisfying (140). In fact, since the
operator A is strongly elliptic, the parabolic estimates in Besov spaces with last index 1

recalled in Proposition A.1 ensure that any smooth enough global solution Ñ satisfies for
all t ≥ 0,

‖Ñ(t)‖
Ḃ
d
2
2,1

+

∫ t

0
‖Ñ‖

Ḃ
d
2+2

2,1

dτ . ‖Ñ0‖
Ḃ
d
2
2,1

+

∫ t

0

(
‖Q1(Ñ ,∇2Ñ)‖

Ḃ
d
2
2,1

+‖Q2(∇Ñ ,∇Ñ)‖
Ḃ
d
2
2,1

+ ‖T1(Ñ ,∇Ñ ,∇Ñ)‖
Ḃ
d
2
2,1

+ ‖T2(Ñ , Ñ ,∇2Ñ)‖
Ḃ
d
2
2,1

)
dτ.
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Using the stability of the space Ḃ
d
2
2,1 by product and an obvious interpolation inequality,

the nonlinear terms may be estimated as follows:

‖Q1(Ñ ,∇2Ñ)‖
Ḃ
d
2
2,1

. ‖Ñ‖
Ḃ
d
2
2,1

‖∇2Ñ‖
Ḃ
d
2
2,1

. ‖Ñ‖
Ḃ
d
2
2,1

‖Ñ‖
Ḃ
d
2+2

2,1

,

‖Q2(∇Ñ ,∇Ñ)‖
Ḃ
d
2
2,1

. ‖∇Ñ‖2
Ḃ
d
2
2,1

. ‖Ñ‖
Ḃ
d
2
2,1

‖Ñ‖
Ḃ
d
2+2

2,1

,

‖T1(Ñ ,∇Ñ ,∇Ñ)‖
Ḃ
d
2
2,1

. ‖Ñ‖
Ḃ
d
2
2,1

‖∇Ñ‖2
Ḃ
d
2
2,1

. ‖Ñ‖2
Ḃ
d
2
2,1

‖Ñ‖
Ḃ
d
2+2

2,1

,

‖T2(Ñ , Ñ ,∇2Ñ)‖
Ḃ
d
2
2,1

. ‖Ñ‖2
Ḃ
d
2
2,1

‖∇2Ñ‖
Ḃ
d
2
2,1

. ‖Ñ‖2
Ḃ
d
2
2,1

‖Ñ‖
Ḃ
d
2+2

2,1

.

Hence, we have for all t ≥ 0,

‖Ñ(t)‖
Ḃ
d
2
2,1

+

∫ t

0
‖Ñ‖

Ḃ
d
2+2

2,1

dτ . ‖Ñ0‖
Ḃ
d
2
2,1

+

∫ t

0

(
1 + ‖Ñ‖

Ḃ
d
2
2,1

)
‖Ñ‖

Ḃ
d
2
2,1

‖Ñ‖
Ḃ
d
2+2

2,1

dτ.

Clearly, if the solution is small enough (which is ensured if the initial data is small) then, the
last term of the right-hand side may be absorbed by the left-hand side, leading to Inequality
(140). The above formal inequalities combined with a suitable contracting mapping argu-
ment (in the spirit of the one that is used e.g. for solving the incompressible Navier-Stokes
equations, see details in [2, Chap. 5]), allow to conclude to the global existence of a solution
to (125), fulfilling the desired properties.

To finish the proof of Theorem 4.3, we just have to compare Z̃1 with Ñ . To proceed, let

us subtract (125) from (123). We get the following equation for δÑ , Z̃1 − Ñ :

∂τδÑ +AδÑ = S −Q1(Z̃1,∇2δÑ)−Q1(δÑ ,∇2Ñ)−Q2(∇Z̃1,∇δÑ)−Q2(∇δÑ ,∇Ñ)

−T1(δÑ ,∇Z̃1,∇Z̃1)− T1(Ñ ,∇δÑ ,∇Z̃1)− T1(Ñ ,∇Ñ ,∇δÑ)

−T2(δÑ , Z̃1,∇2Z̃1)− T2(Ñ , δÑ ,∇2Z̃1)− T2(Ñ , Ñ ,∇2δÑ).

Hence, by virtue of Proposition A.1, we have for all t ≥ 0,

‖δÑ‖
L∞t (Ḃ

d
2−1

2,1 )∩L1
t (Ḃ

d
2+1

2,1 )
. ‖δÑ(0)‖

Ḃ
d
2−1

2,1

+ ‖S‖
L1
t (Ḃ

d
2−1

2,1 )
+ ‖Q1(Z̃1,∇2δÑ)‖

L1
t (Ḃ

d
2−1

2,1 )

+‖Q1(δÑ ,∇2Ñ)‖
L1
t (Ḃ

d
2−1

2,1 )
+ ‖Q2(∇Z̃1,∇δÑ)‖

L1
t (Ḃ

d
2−1

2,1 )
+ ‖Q2(∇δÑ ,∇Ñ)‖

L1
t (Ḃ

d
2−1

2,1 )

+‖T1(δÑ ,∇Z̃1,∇Z̃1)‖
L1
t (Ḃ

d
2−1

2,1 )
+‖T1(Ñ ,∇δÑ ,∇Z̃1)‖

L1
t (Ḃ

d
2−1

2,1 )
+‖T1(Ñ ,∇Ñ ,∇δÑ)‖

L1
t (Ḃ

d
2−1

2,1 )

+‖T2(δÑ , Z̃1,∇2Z̃1)‖
L1
t (Ḃ

d
2−1

2,1 )
+ ‖T2(Ñ , δÑ ,∇2Z̃1)‖

L1
t (Ḃ

d
2−1

2,1 )
+ ‖T2(Ñ , Ñ ,∇2δÑ)‖

L1
t (Ḃ

d
2−1

2,1 )
.
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So, using (69), the stability of Ḃ
d
2
2,1 by product, (145), (138) and (140), we find that

‖δÑ‖
L∞t (Ḃ

d
2−1

2,1 )∩L1
t (Ḃ

d
2+1

2,1 )
. ‖δÑ(0)‖

Ḃ
d
2−1

2,1

+ ‖S̃‖
L1
t (Ḃ

d
2−1

2,1 )

+
(
(1 + ‖(Ñ , Z̃1)‖

L∞t (Ḃ
d
2
2,1)

)‖Ñ‖
L∞t (Ḃ

d
2
2,1)

+ ‖Z̃1‖
L∞t (Ḃ

d
2
2,1)

)
‖∇δÑ‖

L1
t (Ḃ

d
2
2,1)

+ ‖(Ñ , Z̃1)‖
L∞t (Ḃ

d
2
2,1)
‖∇2Z̃1‖

L2
t (Ḃ

d
2
2,1)
‖δÑ‖

L2
t (Ḃ

d
2
2,1)

+
(
‖∇2Ñ‖

L1
t (Ḃ

d
2
2,1)

+ ‖∇Z̃1‖2
L2
t (Ḃ

d
2
2,1)

)
‖δÑ‖

L∞t (Ḃ
d
2−1

2,1 )

. ‖δÑ(0)‖
Ḃ
d
2−1

2,1

+ αε+ (α+ α2)‖δÑ‖
L1
t (Ḃ

d
2+1

2,1 )∩L∞t (Ḃ
d
2−1

2,1 )
.

Hence, as α is small enough, we get:

(146) ‖δÑ‖
L∞t (Ḃ

d
2−1

2,1 )∩L1
t (Ḃ

d
2+1

2,1 )
. ‖δÑ(0)‖

Ḃ
d
2−1

2,1

+ αε for all t ≥ 0,

which completes the proof of the theorem. �

We end this section with a few remarks. The first one is that, for small ε, it is natural
to modify the definition in (121) so as to have a damped mode that is expressed in terms

of Z̃2 and Ñ . If we set

(147) W̌ , Z̃2 + L−12

d∑
k=1

(
Āk21 + Ãk21(Ñ)

)
∂kÑ ,

then we have

W̃ − W̌ = L−12

d∑
k=1

(
Ak21(Ñ)∂kδÑ + Ãk21(δÑ)∂kZ̃1

)
·

In order to bound the right-hand side, one can observe that

‖Ak21(Ñ)∂kδÑ‖
L1(R+;Ḃ

d
2
2,1)
. ‖Ñ‖

L∞(R+;Ḃ
d
2
2,1)
‖δÑ‖

L1(R+;Ḃ
d
2+1

2,1 )
,

‖Ãk21(δÑ)∂kZ̃1‖
L1(R+;Ḃ

d
2
2,1)
. ‖δÑ‖

L2(R+;Ḃ
d
2
2,1)
‖∂kZ̃1‖

L2(R+;Ḃ
d
2
2,1)
.

Hence, taking advantage of Inequalities (140), (141) and (142), and of interpolation inequal-
ities yields

(148) ‖W̃ − W̌‖
L1(R+;Ḃ

d
2
2,1)
≤ Cα

(
‖δÑ(0)‖

Ḃ
d
2−1

2,1

+ αε
)
,

which guarantees that W̌ satisfies (121).

Note also that, since Z̃1 is bounded in Cb(R+; Ḃ
d
2
2,1) independently of ε , using (140) and

(142), and interpolating, one obtains

‖Ñ − Z̃1‖
L∞(R+;Ḃ

d
2−β
2,1 )

≤ Cεβ, β ∈ (0, 1).

Finally, observe that if we introduce the following rescaled solution of the limit system:

N ε(t, x) , Ñ ε(εt, x),
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then combining (142) with the definition of Z̃ε1 in (119) yields

Zε1 = N ε +O(ε) in L∞(R+; Ḃ
d
2
−1

2,1 )

which is, indeed, a more accurate information than what we had in Theorem 4.1 or in (118).
Similarly, putting (142) and (148) together yields the following expansion:

Zε2(t, x) = −εL−12

d∑
k=1

(
Āk21 + Ãk21(Ñ(εt, x))

)
∂kÑ(εt, x) +O(ε) in L1(R+; Ḃ

d
2
2,1).

Appendix A

The following classical result (see the proof in e.g. the Appendix of [10]) has been used
a number of times in this text.

Lemma A.1. Let X : [0, T ]→ R+ be a continuous function such that X2 is differentiable.
Assume that there exists a constant c ≥ 0 and a measurable function A : [0, T ]→ R+ such
that

1

2

d

dt
X2 + cX2 ≤ AX a.e. on [0, T ].

Then, for all t ∈ [0, T ], we have

X(t) + c

∫ t

0
X(τ) dτ ≤ X0 +

∫ t

0
A(τ) dτ.

We frequently took advantage of the fact that applying derivatives or, more generally,
Fourier multipliers on spectrally localized functions is almost equivalent to multiplying by
some constant depending only on the Fourier multiplier and on the spectral support.

This is illustrated by the classical Bernstein inequality that states (see e.g. [2, Chap. 2])
that for any R > 0 there exists a constant C such that for any λ > 0 and any function
u : Rd → R with Fourier transform û supported in the ball B(0, Rλ), we have

(149) ‖∂αu‖Lq ≤ C1+|α|λ
|α|+d( 1

p
− 1
q
)‖u‖Lp , α ∈ Nd, 1 ≤ p ≤ q ≤ ∞.

The reverse Bernstein inequality asserts that, under the stronger assumption that û is
supported in the annulus {x ∈ Rd : rλ ≤ |x| ≤ Rλ} for some 0 < r < R, then we have in
addition,

(150) ‖u‖Lp ≤ Cλ−1‖∇u‖Lp , 1 ≤ p ≤ ∞.
A slight modification of the proof of (149) allows to extend the result to any smooth
homogeneous multiplier : denoting by M a smooth function on Rd \ {0} with homogeneity
γ, there exists a constant C such that for any λ > 0 and any function u : Rd → R with
Fourier transform û supported in the annulus {x ∈ Rd : rλ ≤ |x| ≤ Rλ}, we have

(151) ‖M(D)u‖Lq ≤ Cλγ+d(
1
p
− 1
q
)‖u‖Lp , α ∈ Nd, 1 ≤ p ≤ q ≤ ∞.

In the last section, in order to study the convergence to the limit system, we used maximal
regularity estimates in Besov spaces with last index 1 for parabolic system. These estimates
are well known for the heat equation (see e.g. [2, Chap. 2]). Below, we extend them to
semi-groups generated by strictly elliptic homogeneous multipliers in the following meaning:
we consider functions A ∈ C∞(Rd \ {0};Mn(C)) homogeneous of degree γ, such that the
matrix A(ξ) is Hermitian and satisfies for some c > 0:

(152)
(
A(ξ)z · z

)
≥ c|ξ|γ |z|2, ξ ∈ Rd \ {0}, z ∈ Cn.
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Proposition A.1. Let u ∈ C(R+;S ′) satisfy

(153)

{
∂tz +A(D)z = f on R+ × Rd,
z|t=0 = z0 on Rd.

Then, for any p ∈ [1,∞] and s ∈ R the following inequality holds true for all t > 0 :

(154) ‖z(t)‖Ḃsp,1 +

∫ t

0
‖z‖Ḃs+γp,1

dτ ≤ C
(
‖z0‖Ḃsp,1 +

∫ t

0
‖f‖Ḃsp,1 dτ

)
·

Proof. If z satisfies (153) then for any j ∈ Z, we have

∂tzj +A(D)zj = fj with zj , ∆̇jz and fj , ∆̇jf.

Hence, according to Duhamel’s formula,

(155) zj(t) = e−tA(D)z0,j +

∫ t

0
e−(t−τ)A(D)fj(τ) dτ.

Let us provisionally admit the following lemma:

Lemma A.2. There exist two constants c0 and C such that the following inequality holds
for all j ∈ Z, t ≥ 0 and p ∈ [1,∞]:

(156) ‖∆̇je
tA(D)z‖Lp ≤ Ce−c02

γjt‖∆̇jz‖Lp .

Then, plugging (156) in (155) yields for all j ∈ Z,

(157) ‖zj(t)‖Lp . e−c02
γjt‖z0,j‖Lp +

∫ t

0
e−c02

γj(t−τ)‖fj(τ)‖Lp dτ.

Hence, taking the supremum norm on [0, t] (resp. integrating on [0, t]), we get for all j ∈ Z,

‖zj‖L∞(0,t;Lp) + 2γj‖zj‖L1(0,t;Lp) .
(

1− e−c02γjt
)(
‖z0,j‖Lp + ‖fj‖L1(0,t;Lp)

)
·

Just bounding the prefactor in the right-hand side by 1, multiplying the two sides by 2js

and summing up on Z yields the claimed inequality. �

Proof of Lemma A.2. Thanks to the homogeneity of A, using a suitable change of variables
reduces the proof to the case j = 0. Indeed, if we set ζ(x) , z(2−jx), then we have

∆̇0ζ(2jx) = ∆̇jz(x) and

e−2
γjλA(D)∆̇0ζ(2jx) = e−λA(D)∆̇jz(x), λ ≥ 0.

Then, consider a function φ in D(Rd \ {0}) with value 1 on a neighborhood of the support
of ϕ and write that

e−tA(D)∆̇0ζ = F−1
(
φe−λA(·)̂̇∆0ζ

)
= gλ ? ∆̇0u with gλ(x) , (2π)−d

∫
Rd
ei x·ξφ(ξ)e−λA(ξ)dξ.

If it is true that

(158) ‖gλ‖L1 ≤ Ce−c0λ

then using that the convolution product maps L1 ? Lp to Lp implies that

‖e−λA(D)∆̇0ζ‖Lp ≤ ‖gλ‖L1‖∆̇0ζ‖Lp ≤ Ce−c0λ‖∆̇0ζ‖Lp ,
and we get (156) after reverting to the original variables.
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In order to prove (158), it suffices to establish that

|gλ(x)| ≤ C(1 + |x|2)−de−c0λ, x ∈ Rd, λ > 0.

Now, integrating by parts, we get

(2π)dgλ(x) = (1 + |x|2)−dhλ(x) with hλ(x) ,
∫
Rd
ei x·ξφ(ξ)(Id −∆ξ)

d
(
e−λA(ξ)

)
dξ.

Of course, the integral may be restricted to Suppφ which is a compact subset of Rd \ {0}.
Owing to (152), on this subset, there exists a positive constant c0 such that all the real
parts of the eigenvalues of A(ξ) are bounded from below by 2c0. Now, since the differential
of the exponential map may be computed by the formula

DeX ·H =

∫ 1

0
e(1−τ)XHeτX dτ, H ∈Mn(R),

the chain rule entails that

Dξ

(
e−λA(ξ)

)
·H = −λ

∫ 1

0
e−λ(1−τ)A(ξ)

(
DξA(ξ) ·H

)
e−λτA(ξ) dτ.

Hence, there exist two constants C and C ′ such that∣∣∣∣Dξ

(
e−λA(ξ)

)∣∣∣∣ ≤ C ′λe−2c0λ ≤ Ce−c0λ, λ > 0, ξ ∈ Suppφ.

By induction, one can get similar estimates for higher order derivatives of ξ 7→ e−λA(ξ),
which eventually yields

|hλ(x)| ≤ Ce−c0λ, x ∈ Rd, λ > 0,

and completes the proof. �

Remark A.1. In the case p = 2 one can work out a shorter proof, based on the Fourier-
Plancherel theorem. However, it is interesting to point out that the very same result holds
for any value of p in [1,∞] including 1 and ∞, and with a constant independent of p.

The following lemma ensures that in the setting of System (57), if both Condition (SK)
and Ak11(V̄ ) = 0 for all k ∈ {1, · · · , d} are satisfied, then the second order differential
operator A defined in (122) is indeed strictly elliptic in the sense of Proposition A.1, with
γ = 2.

Lemma A.3. Consider two n× n Hermitian matrices A and B such that

(159) A =

(
0 A12

A21 A22

)
and B =

(
0 0
0 B22

)
with A12 ∈ Mn1,n2(C), A21 ∈ Mn2,n1(C), A22 ∈ Mn2,n2(C) and B22 ∈ Mn2,n2(C). Sup-
pose also that B22 is positive. Then, B22 is invertible and the following two properties are
equivalent:

(1) The matrix A12B
−1
22 A21 is a n1 × n1 positive matrix.

(2) Condition (SK) holds true (that is, the four equivalent conditions of Lemma 1.1 are
satisfied).
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Proof. The invertibility of B22 being obvious, let us first assume that A12B
−1
22 A21 is positive.

Then, the rank of A21 must be equal to n1 and so does the rank of B22A21. Now, we observe
that

BA =

(
0 0

B22A21 B22A22

)
·

Hence, the rank of

(
B
BA

)
is equal to n1 + n2 = n, and Condition (SK) is thus satisfied.

Conversely, if A has the special structure (159) then an easy induction reveals that the
bottom left block of any positive power k of A ends with A21. The same property clearly
holds for BAk that thus looks like

BAk =

(
0 0

B22CkA21 Dk

)
for some Ck, Dk ∈Mn2(C).

Now, since B22 is invertible, we have for all k ∈ N,
rank (B22CkA21) ≤ rank (A21) = rank (B22A21).

As the block at the bottom left of BA is equal to B22A21, one can conclude that, under
assumption (159) we automatically have

rank

(
B
BA

)
= rank

(
B
BA
...

BAn−1

)
·

Hence, if we assume in addition that Condition (SK) is satisfied, then we must have
rank(B22A21) = n1, and thus rank(A21) = n1, too. Now, since tĀ12 = A21, we have
for all z ∈ Cn1 ,

A12B
−1
22 A21z · z = B−122 A21z ·A21z.

As B−122 is positive, the right-hand side is nonnegative and vanishes if and only if A21z = 0

and thus if and only if z = 0 since rank(A21) = n1. Hence A12B
−1
22 A21 is positive, which

completes the proof. �
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en dimension deux, Inventiones Mathematicae, 111, 627–670, 1993.

[2] H. Bahouri, J.-Y. Chemin and R. Danchin: Fourier Analysis and Nonlinear Partial Differential Equa-
tions, Grundlehren der mathematischen Wissenschaften, 343, Springer, 2011.

[3] K. Beauchard and E. Zuazua: Large time asymptotics for partially dissipative hyperbolic systems, Arch.
Rational Mech. Anal, 199, 177–227, 2011.

[4] S. Benzoni-Gavage and D. Serre: Multi-dimensional Hyperbolic Partial Differential Equations : First-
order Systems and Applications. Oxford Science Publications, New-York, 2007.

[5] S. Bianchini, B. Hanouzet and R. Natalini: Asymptotic behavior of smooth solutions for partially
dissipative hyperbolic systems with a convex entropy, Comm. Pure and Appl. Math., 60, 1559–1622,
2007.

[6] R. Bianchini and R. Natalini: Nonresonant bilinear forms for partially dissipative hyperbolic systems
violating the Shizuta-Kawashima condition, J. Evol. Equ. 22(3), Paper No. 63, 2022.

[7] P. Brenner: The Cauchy problem for symmetric hyperbolic systems in Lp, Math. Scand., 19, 27–37,
1966.

[8] C. Burtea, T. Crin-Barat and J. Tan: Relaxation limit for a damped one-velocity Baer-Nunziato model
to a Kappila model, arXiv:2109.07746.

[9] J.-Y. Chemin and N. Lerner: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes,
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